Pyrolysis stands out as a highly promising technology for converting biomass. Upgrading the bio-oil to meet the requirements for fuelling internal combustion engines is indispensable. This study evaluates the economic viability of microwave-assisted pyrolysis (MAP) of pine sawdust, followed by bio-oil esterification for the production of biodiesel. Aspen Plus® was used to simulate a facility that processed 2000 metric tonnes of pine sawdust per day. The minimum fuel selling price (MFSP) of biodiesel was established through the use of a discounted cash flow analysis. A life cycle assessment approach was used to evaluate the environmental impact assessment of biodiesel production. Process modelling findings revealed that the pyrolysis section yielded 65.8 wt% bio-oil, 8.9 wt% biochar, and 25.3 wt% NCGs. The biodiesel product yield was 48 wt% of the raw bio-oil, yielding 631.7 tonnes per day of biodiesel. With the cost of methanol playing a significant role, the overall capital investment was $286.1 MM and the total yearly operating expenses were $164.9 MM. The predicted MFSP for biodiesel is $2.31/L, with yearly operational expenses and biodiesel output being the most important factors. The emission from the biodiesel production process resulted in a global warming potential of 70.97 kg CO. With an anticipated MFSP that is competitive with traditional diesel fuel, the study concludes that the method is economically viable. The results underline how crucial it is to optimize crucial process variables in order to increase the process's economic viability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692908PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22261DOI Listing

Publication Analysis

Top Keywords

biodiesel production
12
pine sawdust
12
biodiesel
9
environmental impact
8
impact assessment
8
assessment biodiesel
8
microwave-assisted pyrolysis
8
economic viability
8
mfsp biodiesel
8
production process
8

Similar Publications

Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .

View Article and Find Full Text PDF

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!