Complex multilayer film structures were fabricated through a custom-built angular DC magnetron co-sputtering system. In this system, separate Cu, Al, and brass (Cu + Zn) targets were mounted on three magnetron guns, working in conjunction with a rotating substrate. This study aimed to compare the properties of films with intricate structures, which were sputtered onto glass slides and polypropylene substrates. The sputtering process was optimized using a Box-Behnken design, considering three variable operating conditions: substrate rotation speed, sputtering time, and sputtering voltage. The Analysis of Variance (ANOVA) results for film thickness and roughness, sputtered with three different materials onto glass slides and polypropylene (PP) substrates, indicated that all three independent variables significantly influenced the optimum response, with -values less than 0.05 (<α = 0.05). The optimal conditions for maximizing the thickness and roughness of the sputtered film on PP substrates differed from those obtained for the thin-film properties of the sputtered film on glass slide substrates. Top-view images of the surface morphology revealed a dense and granular structure for the film deposited on the glass slide, whereas some grooves between the grains and fractures were observed in the film on the PP substrate. Additionally, it was evident that these sputtered multilayer films exhibited a complex structure, as reflected in the uniform and homogeneous distribution of Cu, Al, and Zn atoms on both glass slides and PP substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692907 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22247 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil.
Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China. Electronic address:
Marine plastic pollution is a pervasive environmental issue, with microplastics serving as novel substrates for microbial colonization in aquatic ecosystems. This study investigates the succession of plastisphere communities on four common plastic types (polyethylene, polypropylene, polyethylene terephthalate, and polystyrene) in subtropical coastal waters of Hong Kong SAR. Over a 42-day period, we analysed the temporal development of microbial communities using a three-domain universal metabarcoding method.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye.
Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.
View Article and Find Full Text PDFMicroorganisms
October 2024
Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!