A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maximizing biodiesel yield of a non-edible chinaberry seed oil via microwave assisted transesterification process using response surface methodology and artificial neural network techniques. | LitMetric

In this study, the non-edible Chinaberry Seed Oil (CBO) is converted into biodiesel using microwave assisted transesterification. The objective of this effort is to maximize the biodiesel yield by optimizing the operating parameters, such as catalyst concentration, methanol-oil ratio, reaction speed, and reaction time. The designed setup provides a controlled and effective approach for turning CBO into biodiesel, resulting in encouraging yields and reduced reaction times. The experimental findings reveal the optimal parameters for the highest biodiesel yield (95 %) are a catalyst concentration of 1.5 w/w, a methanol-oil ratio of 6:1 v/v, a reaction speed of 400 RPM, and a reaction period of 3 min. The interaction of the several operating parameters on biodiesel yield has been investigated using two methodologies: Response Surface Methodology (RSM) and Artificial Neural Network (ANN). RSM provides better modeling of parameter interaction, while ANN exhibits lower comparative error when predicting biodiesel yield based on the reaction parameters. The percentage improvement in prediction of biodiesel yield by ANN is found to be 12 % as compared to RSM. This study emphasizes the merits of both the approaches for biodiesel yield optimization. Furthermore, the scaling up this microwave-assisted transesterification system for industrial biodiesel production has been proposes with focus on its economic viability and environmental effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692778PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22031DOI Listing

Publication Analysis

Top Keywords

biodiesel yield
28
biodiesel
9
non-edible chinaberry
8
chinaberry seed
8
seed oil
8
microwave assisted
8
assisted transesterification
8
response surface
8
surface methodology
8
artificial neural
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!