AI Article Synopsis

  • Lipid-coated microbubbles are commonly used for ultrasound imaging and drug delivery, but their effectiveness is limited by their short lifespan in the bloodstream and challenges with targeting specific cells.
  • This study introduces exosome-fused microbubbles (Exo-MBs), which combine microbubbles with exosome membrane proteins, enhancing stability and targeting ability.
  • Exo-MBs can then transform into nanoparticles (Exo-NPs) under ultrasound, allowing for improved therapeutic delivery of chlorin e6, leading to increased effectiveness in cancer treatments via photodynamic therapy and immunotherapy.

Article Abstract

Lipid-coated microbubbles are widely used as an ultrasound contrast agent, as well as drug delivery carriers. However, the two main limitations in ultrasound diagnosis and drug delivery using microbubbles are the short half-life in the blood system, and the difficulty of surface modification of microbubbles for active targeting. The exosome, a type of extracellular vesicle, has a preferentially targeting ability for its original cell. In this study, exosome-fused microbubbles (Exo-MBs) were developed by embedding the exosome membrane proteins into microbubbles. As a result, the stability of Exo-MBs is improved over the conventional microbubbles. On the same principle that under the exposure of ultrasound, microbubbles are cavitated and self-assembled into nano-sized particles, and Exo-MBs are self-assembled into exosome membrane proteins-embedded nanoparticles (Exo-NPs). The Exo-NPs showed favorable targeting properties to their original cells. A photosensitizer, chlorin e6, was loaded into Exo-MBs to evaluate therapeutic efficacy as a drug carrier. Much higher therapeutic efficacy of photodynamic therapy was confirmed, followed by cancer immunotherapy from immunogenic cell death. We have therefore developed a novel ultrasound image-guided drug delivery platform that overcomes the shortcomings of the conventional ultrasound contrast agent and is capable of simultaneous photodynamic therapy and cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692476PMC
http://dx.doi.org/10.1016/j.apsb.2023.08.022DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
exosome membrane
12
ultrasound contrast
12
contrast agent
12
microbubbles
8
therapeutic efficacy
8
photodynamic therapy
8
cancer immunotherapy
8
ultrasound
6
drug
5

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Background: Scotland currently has amongst the highest rates of drug-related deaths in Europe, leading to increased advocacy for safer drug consumption facilities (SDCFs) to be piloted in the country. In response to concerns about drug-related harms in Edinburgh, elected officials have considered introducing SDCFs in the city. This paper presents key findings from a feasibility study commissioned by City of Edinburgh Council to support these deliberations.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!