Pulmonary hypertension (PH) is an extremely malignant pulmonary vascular disease of unknown etiology. ADAR1 is an RNA editing enzyme that converts adenosine in RNA to inosine, thereby affecting RNA expression. However, the role of ADAR1 in PH development remains unclear. In the present study, we investigated the biological role and molecular mechanism of ADAR1 in PH pulmonary vascular remodeling. Overexpression of ADAR1 aggravated PH progression and promoted the proliferation of pulmonary artery smooth muscle cells (PASMCs). Conversely, inhibition of ADAR1 produced opposite effects. High-throughput whole transcriptome sequencing showed that ADAR1 was an important regulator of circRNAs in PH. CircCDK17 level was significantly lowered in the serum of PH patients. The effects of ADAR1 on cell cycle progression and proliferation were mediated by circCDK17. ADAR1 affects the stability of circCDK17 by mediating A-to-I modification at the A5 and A293 sites of circCDK17 to prevent it from m1A modification. We demonstrate for the first time that ADAR1 contributes to the PH development, at least partially, through m1A modification of circCDK17 and the subsequent PASMCs proliferation. Our study provides a novel therapeutic strategy for treatment of PH and the evidence for circCDK17 as a potential novel marker for the diagnosis of this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692360 | PMC |
http://dx.doi.org/10.1016/j.apsb.2023.07.006 | DOI Listing |
CNS Neurosci Ther
January 2025
Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
BMC Cancer
January 2025
Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
Objective: Trifluridine/tipiracil (FTD/TPI) is one of the options for late-line treatment of colorectal cancer (CRC). However, the specific patient populations that would particularly benefit from it remain unclear. This study attempted to identify predictive markers of chemotherapy efficacy with trifluridine/tipiracil (FTD/TPI), focusing on the RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) expression and neutrophil-lymphocyte ratio (NLR).
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.
Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.
View Article and Find Full Text PDFNeurol Sci
January 2025
Division of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey.
Cell Signal
December 2024
Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:
Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!