AI Article Synopsis

  • Neutralizing antibodies play a crucial role in protecting against SARS-CoV-2, but current methods can't track specific antibodies in the immune response.
  • Researchers developed an antibodyomics pipeline that combines high-throughput sequencing and analysis to identify and map spike-specific neutralizing antibodies and their lineages.
  • The study found that while many antibodies can target various epitope sites on the spike protein, only a few persist long-term, suggesting a need for more effective vaccine designs based on these findings.

Article Abstract

Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naïve individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naïve B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naïve B cell repertoires, providing a valuable reference for future vaccine design and evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810631PMC
http://dx.doi.org/10.1080/22221751.2023.2290841DOI Listing

Publication Analysis

Top Keywords

spike-specific antibody
16
antibody lineages
16
covid-19 convalescents
12
neutralizing epitopes
12
antibody
10
repertoire sequencing
8
comprehensive atlas
8
neutralizing antibodies
8
target neutralizing
8
329 shared
8

Similar Publications

An allelic atlas of immunoglobulin heavy chain variable regions reveals antibody binding epitope preference resilient to SARS-CoV-2 mutation escape.

Front Immunol

January 2025

State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Background: Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited.

Methods: We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population.

View Article and Find Full Text PDF

Introduction: Despite the efficacy and safety of SARS-CoV-2 vaccines, inflammatory and/or thrombotic episodes have been reported. Since the impact of COVID-19 vaccines on the endothelium remains uncertain, our objective was to assess endothelial activation status before and 90 days after the third dose of the BNT162b2 mRNA COVID-19 vaccine.

Methods: A prospective longitudinal study was conducted at University General Hospital of Albacete, involving 38 healthy health-care workers.

View Article and Find Full Text PDF

The impact of anti-Spike monoclonal antibody (mAbs) treatment on the immune response of COVID19-patients is poorly explored. In particular, a comparison of the immunological influence of different therapeutic regimens has not yet been performed. Aim of the study was to compare the kinetic of innate and adaptive immune response as well as the SARS-CoV-2 specific humoral and T cell response in two groups of SARS-CoV-2-infected patients treated with two different mAbs regimens: Bamlanivimab/Etesevimab (BAM/ETE) or Casirivimab/Imdevimab (CAS/IMD).

View Article and Find Full Text PDF

The long-term effects of repeated COVID-19 vaccinations on adaptive immunity remain incompletely understood. Here, we conducted a comprehensive three-year longitudinal study examining T cell and antibody responses in 78 vaccinated individuals without reported symptomatic infections. We observed distinct dynamics in Spike-specific humoral and cellular immune responses across multiple vaccine doses.

View Article and Find Full Text PDF

Protocol for evaluating humoral immune responses in mice following SARS-CoV-2 vaccination.

STAR Protoc

January 2025

Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China. Electronic address:

Binding and neutralizing antibodies are critical indicators of protection against viral pathogens and are essential for assessing the immunogenicity and efficacy of a vaccine. Here, we present a protocol comprising two assays for measuring the spike-specific binding and neutralizing antibodies in mouse plasma following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. We describe steps for determining binding antibody titers using enzyme-linked immunosorbent assay (ELISA) and assessing neutralizing antibody titers through a pseudovirus neutralization assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!