Pollen is the protein resource for Apis mellifera and its selection affects colony development and productivity. Honey bee foragers mainly lose their capacity to digest pollen, so we expect that those pollen constituents that can only be evaluated after ingestion will not influence their initial foraging preferences at food sources. We predicted that pollen composition may be evaluated in a delayed manner within the nest, for example, through the effects that the pollen causes on the colony according to its suitability after being used by in-hive bees. To address whether pollen foraging is mediated by in-hive experiences, we conducted dual-choice experiments to test the avoidance of pollen adulterated with amygdalin, a deterrent that causes post-ingestion malaise. In addition, we recorded pollen selection in colonies foraging in the field after being supplied or not with amygdalin-adulterated pollen from one of the dominant flowering plants (Diplotaxis tenuifolia). Dual-choice experiments revealed that foragers did not avoid adulterated pollens at the foraging site; however, they avoided pollen that had been offered adulterated within the nest on the previous days. In field experiments, pollen samples from colonies supplied with amygdalin-adulterated pollen were more diverse than controls, suggesting that pollen foraging was biased towards novel sources. Our findings support the hypothesis that pollen assessment relies on in-hive experiences mediated by pollen that causes post-ingestive malaise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.246233 | DOI Listing |
ACS Omega
January 2025
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
Sporopollenin is a plant polymer present in the exine of the pollen grains that comprises two layers: the endexine and the ektexine. It possesses remarkable mechanical, thermal, and chemical stability and is also highly recalcitrant to hydrolysis. The chemical backbone of sporopollenin mostly consists of a polyhydroxylated aliphatic component and polyketide-derived aliphatic α-pyrone elements.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Laboratório de Ecologia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil.
The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China.
The accurate callose deposition plays important roles in pollen wall formation and pollen fertility. As a direct target of miRNA160, ARF17 participate in the formation of the callose wall. However, the impact of ARF17 misexpression in microsporocytes on callose wall formation and pollen fertility remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!