Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic refrigeration based on the magnetocaloric effect (MCE) in metal-organic frameworks (MOF) is regarded as an attractive approach to create more sustainable cooling systems with higher efficiency than traditional ones. Here, we report a study of the MCE in a series of rare-earth-based MOFs. We have considered the selection of the rare-earth cation by investigating materials belonging to the α-rare-earth polymeric framework-4 (α-RPF-4) MOF family, synthesized with different rare-earth cations, and observed that paramagnetic moment and saturation magnetization play an important role in enhancing the magnetic entropy change Δ. The effect of structural parameters has also been considered by investigating three classes of metal-organic Gd materials built up from different types of inorganic secondary building units, including clusters (as in Gd-UiO-66), one-dimensional (as in α-RPF-4), and layered (as in Gd-LRH) conformations. Moreover, the analysis of the hydrostatic pressure influence reveals a significant increase in the -Δ and relative cooling power (RCP) with values between 4.3 and 16.3 and 121-509 J/kg. Specifically, the RCP found was ∼683 J/kg for Gd-UiO-66, which is higher than the one recently observed for GdSiO (649.5 J/kg). The present study demonstrates that the engineering of metal-organic framework systems based on high Gd densities may favor enhancing of magnetocaloric responses even at low pressures, thus promoting a new design strategy for efficient cooling devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c03138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!