Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from SKF4.

J Microbiol Biotechnol

Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia.

Published: February 2024

Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in . The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940756PMC
http://dx.doi.org/10.4014/jmb.2306.06050DOI Listing

Publication Analysis

Top Keywords

thermostable alkaline
12
alkaline protease
8
protease skf4
8
industrial applications
8
spskf4 protease
8
sodium dodecyl
8
dodecyl sulfate
8
increase activity
8
protease
6
enzyme
5

Similar Publications

Fabrication of ethylcellulose/technical alkaline lignin composite film with high anticorrosion performance in NaCl, HCl, and KOH solutions.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address:

Technical alkaline lignin (TAL)-based composite films have been developed for anti-corrosion applications, during which one-component solvents, including acetone and ethanol, were employed. The poor solubility of TAL in the abovementioned solvents undoubtedly resulted in inhomogeneous surface micromorphology and the consequent unstable performance. The present study provides a series of ethylcellulose/TAL (EC/TAL) composite films with uniform surface microstructure by using the 1,4-dioxane/water binary solvent.

View Article and Find Full Text PDF

Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5.

World J Microbiol Biotechnol

November 2024

Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.

Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process.

View Article and Find Full Text PDF

Characterization of heat- and alkali-resistant feruloyl esterase from Humicola insolens and application in the production of high-strength kraft straws.

Int J Biol Macromol

December 2024

School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China. Electronic address:

Article Synopsis
  • * Researchers expressed a thermostable alkaline form of FAE from Humicola insolens in Pichia pastoris, achieving an enzyme activity yield of 2.36 ± 0.21 U/mL, with optimal performance at pH 7.5 and 70 °C.
  • * Using FAE as a pretreatment before chemical bleaching reduced the need for chemical agents by 20%, decreased the kappa value by 10.64%, and improved pulp strength by increasing viscosity by
View Article and Find Full Text PDF

Messenger RNA (mRNA) vaccines against COVID-19 have demonstrated high efficacy and rapid deployment capability to target emerging infectious diseases. However, the need for ultra-low temperature storage made the distribution of LNP/mRNA vaccines to regions with limited resources impractical. This study explores the use of lyophilization to enhance the stability of self-replicating mRNA (repRNA) vaccines, allowing for their storage at non-freezing temperatures such as 2-8 °C or room temperature (25 °C).

View Article and Find Full Text PDF

Design of ancestral mammalian alkaline phosphatase bearing high stability and productivity.

Appl Environ Microbiol

December 2024

Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.

Unlabelled: Mammalian alkaline phosphatase (AP) is widely used in diagnostics and molecular biology but its widespread use is impaired because it is difficult to express in and has low thermostability. To overcome these challenges, we employed sequence-based protein redesign methods, specifically full consensus design (FCD) and ancestral sequence reconstruction (ASR), to create APs with enhanced properties. Biochemical analyses revealed that these newly designed APs exhibited improved levels of expression in their active form and increased thermostability compared to bovine intestinal AP isozyme II (bIAPII), without impeding enzymatic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!