It is highly desired to directly use commercial nickel foam (CNF) as an electrocatalyst for the oxygen evolution reaction (OER) via simple surface reconstruction. In our research, a simple three-step preactivation process was proposed to reconstruct CNF as an efficient OER catalyst, including calcination, high-voltage treatment, and immersing in electrolyte. The optimal CNF after three-step activation reaches an excellent OER performance of 228 and 267 mV at η and η in alkaline media and can tolerate long-term tests under a large current density of 500 mA·cm. The promotion of each step was explored. The calcination step leads to a reconstructive surficial morphology with an enlarged active surface, providing a prerequisite for the following construction steps. The high-voltage treatment changes the valence of surface Ni species, generating phases with higher catalytic activity, and the immersing process introduces Fe heteroatoms into the surface of CNF, boosting the catalytic performance of CNF through Ni-Fe interactions. This research provides a simple method of making high-performance catalysts with accessible nickel foam, a potential for large-scale application in practical industry, and new thinking for the manipulation of Ni-based catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14130 | DOI Listing |
Small
January 2025
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
Environ Res
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea. Electronic address:
In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.
View Article and Find Full Text PDFChemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!