Background: Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease characterized by clinical and pathological diversity. Mitochondrial dysfunction has been identified as a critical pathogenetic factor in SLE. However, the specific molecular aspects and regulatory roles of this dysfunction in SLE are not fully understood. Our study aims to explore the molecular characteristics of mitochondria-related genes (MRGs) in SLE, with a focus on identifying reliable biomarkers for classification and therapeutic purposes.

Methods: We sourced six SLE-related microarray datasets (GSE61635, GSE50772, GSE30153, GSE99967, GSE81622, and GSE49454) from the Gene Expression Omnibus (GEO) database. Three of these datasets (GSE61635, GSE50772, GSE30153) were integrated into a training set for differential analysis. The intersection of differentially expressed genes with MRGs yielded a set of differentially expressed MRGs (DE-MRGs). We employed machine learning algorithms-random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) logistic regression-to select key hub genes. These genes' classifying potential was validated in the training set and three other validation sets (GSE99967, GSE81622, and GSE49454). Further analyses included differential expression, co-expression, protein-protein interaction (PPI), gene set enrichment analysis (GSEA), and immune infiltration, centered on these hub genes. We also constructed TF-mRNA, miRNA-mRNA, and drug-target networks based on these hub genes using the ChEA3, miRcode, and PubChem databases.

Results: Our investigation identified 761 differentially expressed genes (DEGs), mainly related to viral infection, inflammatory, and immune-related signaling pathways. The interaction between these DEGs and MRGs led to the identification of 27 distinct DE-MRGs. Key among these were FAM210B, MSRB2, LYRM7, IFI27, and SCO2, designated as hub genes through machine learning analysis. Their significant role in SLE classification was confirmed in both the training and validation sets. Additional analyses included differential expression, co-expression, PPI, GSEA, immune infiltration, and the construction of TF-mRNA, miRNA-mRNA, and drug-target networks.

Conclusions: This research represents a novel exploration into the MRGs of SLE, identifying FAM210B, MSRB2, LYRM7, IFI27, and SCO2 as significant candidates for classifying and therapeutic targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694981PMC
http://dx.doi.org/10.1186/s41927-023-00369-0DOI Listing

Publication Analysis

Top Keywords

hub genes
16
machine learning
12
differentially expressed
12
systemic lupus
8
lupus erythematosus
8
genes mrgs
8
mrgs sle
8
datasets gse61635
8
gse61635 gse50772
8
gse50772 gse30153
8

Similar Publications

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) can generally be divided into focal damage and diffuse damage, and neonate Hypoxia-Ischemia Brain Damage (nHIBD) is one of the causes of diffuse damage. Patients with nHIBD are at an increased risk of developing Alzheimer's disease (AD). However, the shared pathogenesis of patients affected with both neurological disorders has not been fully elucidated.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Background: Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood.

Methods: In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG.

View Article and Find Full Text PDF

Background: Patients with pancreatic ductal adenocarcinoma (PDAC) face a highly unfavorable outcome and have a poor response to standard treatments. Immunotherapy, especially therapy based on natural killer (NK) cells, presents a promising avenue for the treatment of PDAC.

Aims: This research endeavor seeks to formulate a predictive tool specifically designed for PDAC based on NK cell-related long non-coding RNA (lncRNA), revealing new molecular subtypes of PDAC to promote personalized and precision treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!