Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828142PMC
http://dx.doi.org/10.1007/s11357-023-01024-9DOI Listing

Publication Analysis

Top Keywords

cerebral microhemorrhages
8
cellular senescence
8
senescent cells
8
cerebral microvasculature
8
consequences cmhs
8
cmhs
7
cerebral
5
preventing spontaneous
4
spontaneous cerebral
4
aging
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli Lilly and Company, Indianapolis, IN, USA.

Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Background: Anti-amyloid antibodies have been associated with amyloid-related-imaging-abnormalities (ARIA) in AD patients, causing vasogenic edema and microhemorrhages, especially in ApoE4 carriers. Here, we compared recombinant 3D6-L, a murine version of bapineuzumab, and an isotype control IgG2a monoclonal antibody (mAb) to investigate potential mechanisms, including complement activation, involved in these side effects (ARIA-H or microhemorrhages) following passive immunization.

Method: Plaque-rich 16.

View Article and Find Full Text PDF

Background: UK Biobank data show mutations related to the iron disorder hemochromatosis can approximately double the risk of dementia, in particular clinically diagnosed vascular dementia. Insights into the etiology of this dementia may be provided by cerebrovasculopathy in our new "Aβ+Iron" mouse model, which combines hemochromatosis-related mutations and amyloidosis, with increases in soluble Aβ species and plaques. This was created by crossing an established APP/PS1 model of β-amyloidosis with our reported HfexTfr2 model of hemochromatosis-related mutations exhibiting brain iron dyshomeostasis (Heidari Mol.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.

Anti-amyloid immunotherapy holds great promise for our patients and their families as the first disease-modifying therapy for the treatment of Alzheimer's disease (AD) to be approved. Positive clinical trials for lecanamab and donanemab showed significant and rapid lowering of brain amyloid burden and a significant slowing of cognitive decline. Amyloid-related imaging abnormalities (ARIA) in the form of vasogenic edema (ARIA-E) and micro - and macro- hemorrhages (ARIA-H) remain the major obstacle to broad use of these agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!