Ephedra herb, a dried terrestrial stem of Ephedra sinica, is used in traditional Japanese medicine (Kampo) and Chinese medicine to treat the common cold, headaches, bronchial asthma, and nasal inflammation. E. sinica predominantly contains two ephedrine alkaloids-(-)-ephedrine and (+)-pseudoephedrine-which are crucial for its medicinal effects. This study aimed to reveal the influence of genetic and environmental factors on ephedrine alkaloids content using statistical genetic analyses. To evaluate the influence of genetic factors on ephedrine alkaloids content, 25 clonal lines were cultivated in Ibaraki and the broad-sense heritability of the traits was estimated. The heritabilities of (-)-ephedrine, (+)-pseudoephedrine, and "total alkaloids" (TA) content were 0.871, 0.969, and 0.865, respectively. The heritabilities of ephedrine alkaloids content were high. To evaluate the influence of environmental factors on ephedrine alkaloids content, four clonal lines which have different genotypes were cultivated in three locations (Ibaraki, Shizuoka, and Yamanashi prefectures). The effects of genotype (G), location (L), and genotype by environment (G × E) interactions on ephedrine alkaloids content were found to be significant (p < 0.05) by two-way ANOVA, and, in particular, the genotypic effects were found to be the largest. Our results indicate that the ephedrine alkaloids content in E. sinica is under relatively strong genetic control and remains stable under various environments. These findings suggest that E. sinica with a higher and stable ephedrine alkaloids content could be cultivated in different locations through selective breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b23-00374 | DOI Listing |
J Pharm Biomed Anal
December 2024
Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China. Electronic address:
Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
December 2024
Faculty of Pharmacy, Kindai University.
The main ingredients of Maobushisaishinto (MBST) are ephedrine (EP), methyl eugenol (ME), and aconitine (AC). The pharmacological effects are presumed to be due to the combined effects of these ingredients. In this study, we investigated the impact of the particles present in MBST suspensions on the absorption of the ingredients.
View Article and Find Full Text PDFYakugaku Zasshi
December 2024
Division of Drug Informatics, Keio University Faculty of Pharmacy.
Sci Rep
November 2024
Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
Drug-drug interactions may amplify or diminish their intended effects, or even produce entirely new effects. Multicomponent mixture HPLC analysis offers a thorough and effective method for comprehending the makeup and behavior of complicated materials, advancing research and development across a range of scientific and industrial domains. A novel experimental design-assisted HPLC methodology for the concurrent investigation of the drug-drug interaction of pholcodine, ephedrine, and guaifenesin in biological fluids has been established.
View Article and Find Full Text PDFSci Rep
November 2024
Research Group Tarha, Department of Historical Sciences, University of Las Palmas de Gran Canaria, Pérez del Toro 1, Las Palmas, 35003, Spain.
The active compounds found in many plants have been widely used in traditional medicine and ritual activities. However, archaeological evidence for the use of such plants, especially in the Palaeolithic period, is limited due to the poor preservation and fragility of seed, fruit, and other botanical macro-remains. In this study, we investigate the presence and possible uses of Ephedra during the Late Pleistocene based on the analysis of exceptionally preserved plant macrofossils recovered from c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!