AI Article Synopsis

Article Abstract

This review paper summarizes progress that has been made in the new field of "Controlled Intracellular Trafficking." This involves the development of new systems for delivering plasmid DNA (pDNA), small interfering RNA (siRNA), mRNA, proteins, their escape from endosomes, the mechanism for how they enter the nucleus, how they enter mithochondria and how materials subsequently function within a cell. In addition, strategies for delivering these materials to a selective tissue after intravenous administration was also intensively investigated not only to the liver but also to tumors, lungs, adipose tissue and the spleen. In 2020, a new mRNA vaccine was developed against coronavirus disease 2019 (COVID-19), where ionizable cationic lipids were used as a delivery system. Our strategy to identify an efficient ionizable cationic lipids (iCL) based on a lipid library as well as their applications concerning the delivery of siRNA/mRNA/pDNA is also described.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b23-00634DOI Listing

Publication Analysis

Top Keywords

ionizable cationic
8
cationic lipids
8
innovative system
4
system delivering
4
delivering nucleic
4
nucleic acids/genes
4
acids/genes based
4
based controlled
4
controlled intracellular
4
intracellular trafficking
4

Similar Publications

The intramolecular migration of three hydrogen atoms from one moiety of a gaseous radical cation to the other prior to fragmentation is an extremely rare type of redox reaction. Within the scope of this investigation, this scenario requires an ionized but electron-rich arene acceptor bearing a para-(3-hydroxyalkyl) residue. The precise mechanism of such unidirectional 3H transfer processes, including the order of the individual H transfer steps, has remained unclear in spite of previous isotope labelling and recent infrared ion spectroscopy (IRIS) studies.

View Article and Find Full Text PDF

The single crystals of lead-free NaBiTiO were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV.

View Article and Find Full Text PDF

Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.

View Article and Find Full Text PDF

At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.

View Article and Find Full Text PDF

The enantioselective synthesis of 1,4-dicarbonyl compounds continues to pose a significant challenge in organic synthesis, and a catalytic process which generates two adjacent stereogenic centers with full stereochemical control is lacking until now. The 1,4-relationship of the functional groups requires an Umpolung strategy as one of the α-carbonyl positions has to be inverted into an electrophilic center to react with a normal enolate. We report herein the highly enantio- and diastereoselective addition of silyl ketene acetals toward electrophilic 1-azaallyl cations to furnish chiral 4-hydrazonoesters, which are masked 1,4-dicarbonyl compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!