Rare eye diseases encompass a broad spectrum of genetic anomalies with or without additional extraocular manifestations. Genetic eye disorders in pediatric patients often lead to severe visual impairments. Therefore, a challenge of gene therapy is to provide better vision to these affected children. In recent years, inherited retinal diseases, inherited optic neuropathies, and corneal dystrophies have dominated discussions to establish gene and cell replacement therapies for these diseases. Gene therapy involves the transfer of genetic material to remove, replace, repair, or introduce a gene, or to overexpress a protein, whose activity would have a therapeutic impact. For the majority of anterior segment diseases, these studies are still emerging at a preclinical stage; however, for inherited retinal disorders, translation has been reached, leading to the introduction of the first gene therapies into clinical practice. In the past decade, the first gene therapy for biallelic RPE65-mediated inherited retinal dystrophy has been developed and the FDA and EMA both approved ocular gene therapy. Other promising approaches by intravitreal injection have been investigated such as in CEP290-Leber congenital amaurosis. Various techniques of gene therapies include gene supplementation, CRISPR-based genome editing, as well as RNA modulation and optogenetics. Optogenetic therapies deliver light-activated ion channels to surviving retinal cell types in order to restore photosensitivity. Beyond retinal function, ataluren, a nonsense mutation suppression therapy, enables ribosomal read-through of mRNA containing premature termination codons, resulting in the production of a full-length protein. An ophthalmic formulation was recently evaluated with the aim of repairing corneal damage, pending new clinical studies. However, various congenital disorders exhibit severe developmental defects or cell loss at birth, limiting the potential for viral gene therapy. Therefore mutation-independent strategies seem promising for maintaining the survival of photoreceptors or for restoring visual function. Restoring vision in children with gene therapy continues to be a challenge in ophthalmology. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0929-693X(23)00226-9 | DOI Listing |
The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFBioanalysis
January 2025
Eli Lilly and Company, Indianapolis, IN, USA.
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China.
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME).
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFViruses
January 2025
Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!