A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene therapy for neurodegenerative disorders in children: dreams and realities. | LitMetric

Gene therapy for neurodegenerative disorders in children: dreams and realities.

Arch Pediatr

GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France.

Published: November 2023

Gene therapy encompasses the administration of biological medicinal products containing recombinant nucleic acids, mainly DNA, with the aim of treating or curing diseases. This represents a unique therapeutic strategy to reach the brain, in order to prevent or halt a neurodegenerative process. During the past decade, active multidisciplinary research has started to solve many issues for gene therapy in neurodegenerative disorders in terms of vectors, modes of administration, and expression of the therapeutic DNA. The engineering of hematopoietic stem cells (HSC) with lentivirus vectors for ex vivo gene therapy has demonstrated efficiency in reaching the brain through their transformation into microglial/macrophages cells with a long-term gene expression of the therapeutic vector as an alternative to autologous HSC transplants. Two drugs based on this strategy have been approved to date. The first is for metachromatic leukodystrophy (MLD), a severe lysosomal storage disease, and provides high levels of the deficient enzyme; the second one is for cerebral forms of X-linked adrenoleukodystrophy (X-ALD), and works by halting the neuroinflammation process. However, due to the long-lasting effect of the procedure, the therapy is applicable only to pre- or pauci/oligo-symptomatic patients. In vivo gene therapy via direct injection into the brain or the cerebrospinal fluid, but also by intravenous injection, represents a more efficient approach; however, many challenges remain to be solved despite the approval of two drugs: one for the early infantile form of spinal muscular atrophy (SMA), in which the gene product injected intravenously is able to prevent spinal motoneuron neurodegeneration. The second one, for aromatic L-amino acid decarboxylase (AADC) deficiency, provides the defective enzyme to the basal ganglia via intraparenchymal injection. The production of vectors able to reach the brain target cells with a sufficiently high expression remains a major bottleneck. In parallel, efforts must continue in order to better define (i) the natural history and clinical outcomes of many neurodegenerative disorders with childhood onset, and (ii) the mechanisms involved in the neurodegenerative process. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0929-693X(23)00225-7DOI Listing

Publication Analysis

Top Keywords

gene therapy
20
neurodegenerative disorders
12
therapy neurodegenerative
8
reach brain
8
neurodegenerative process
8
expression therapeutic
8
vivo gene
8
gene
7
neurodegenerative
5
therapy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!