A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Augmentin loaded functionalized halloysite nanotubes: A sustainable emerging nanocarriers for biomedical applications. | LitMetric

AI Article Synopsis

  • * A dual treatment process involving sulfuric acid and (3-aminopropyl) triethoxysilane (APTES) was used to enhance the HNTs' surface for better drug molecule interaction, specifically loading the antibiotic Augmentin.
  • * Characterization techniques confirmed the successful drug loading and antibacterial efficacy against E. coli and S. aureus, along with a drug encapsulation efficiency of 40.89%, indicating HNTs' potential as effective nanocarriers for therapeutic drug delivery.

Article Abstract

Clay minerals such as Halloysite nanotubes (HNTs), abundantly available green nanomaterial, exhibit a significant advantage in biomedical applications such as drug delivery, antibacterial and antimicrobials, tissue engineering or regeneration, etc. Because of the mesoporous structure and high absorbability, HNTs exhibit great potential as a nanocarrier in drug delivery applications. The sulfuric acid treatment enhances the surface area of the HNTs and thereby improves their drug-loading capacity by enlarging their lumen space/inner diameter. In the present investigation, based on the literature that supports the efficacy of drug loading after acid treatment, a dual treatment was performed to functionalize the HNTs surface. First, the HNTs were etched and functionalized using sulfuric acid. The acid-functionalized HNTs underwent another treatment using (3-aminopropyl) triethoxysilane (APTES) to better interact the drug molecules with the HNTs surfaces for efficient drug loading. Augmentin, a potential drug molecule of the penicillin group, was used for HNTs loading, and their antibacterial properties, cytotoxicity, and cumulative drug release (%) were evaluated. Different characterization techniques, such as X-ray diffractometer (XRD) and Fourier Transform Infra-Red (FT-IR), confirm the loading of Augmentin to the APTES@Acid HNTs. TEM images confirm the effective loading of the drug molecule with the HNTs. The drug encapsulation efficiency shows 40.89%, as confirmed by the Thermogravimetric Analysis (TGA). Also, the Augmentin-loaded APTES@Acid HNTs exhibited good antibacterial properties against E. coli and S. aureus and low cytotoxicity, as confirmed by the MTT assay. The drug release studies confirmed the sustainable release of Augmentin from the APTES@Acid HNTs. Hence, the treated HNTs can be considered as a potential nanocarrier for effectively delivering Augmentin and promoting enhanced therapeutic benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117811DOI Listing

Publication Analysis

Top Keywords

hnts
13
aptes@acid hnts
12
drug
10
halloysite nanotubes
8
biomedical applications
8
drug delivery
8
potential nanocarrier
8
sulfuric acid
8
acid treatment
8
drug loading
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!