A novel method for effective solidifying chromium and preparing crude stainless steel from multi-metallic electroplating sludge.

J Hazard Mater

Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, China; National Local Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.

Published: March 2024

AI Article Synopsis

Article Abstract

Electroplating sludge (ES) is a globally prevalent hazardous waste that primarily contains Cr, Cu, Ni, and Fe. However, the residual Cr phases within the slag potentially poses an environmental risk in current vitrification. A novel method for effective recovering and solidifying Cr in ES is proposed in this work. ES was desulfurized and subsequently co-treated with ferrosilicon (Fe-Si) and spent carbon anode (SCA) for enhancing the recovery of Cr, Cu, Ni, and Fe to prepare crude stainless steel. Under optimal conditions, the recovery ratios of Cr, Cu, Ni, and Fe reached 96.96%, 99.45%, 99.92%, and 99.20%, respectively, signifying improvements of 21.4%, 0.2%, 1.5%, and 2.8%, respectively, compared with existing research. Meanwhile, the fluoride in SCA yielded CaF, further progressing to the Si-Ca-F-Na-Al-O phase, with a solidification ratio of 97.87%. The Cr leaching content of the residual Cr-Cu-S phase in the slag remained below 5 mg/L across a pH range of 2-4, demonstrating enhanced stability compared to prior alloy, oxide, and chemically dissolved phases. An innovative approach for solidify Cr by forming matte holds implications for the treatment of Cr-containing solid wastes such as chromium slag, tannery sludge and stainless steel slag.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.133068DOI Listing

Publication Analysis

Top Keywords

stainless steel
12
novel method
8
method effective
8
crude stainless
8
electroplating sludge
8
effective solidifying
4
solidifying chromium
4
chromium preparing
4
preparing crude
4
steel multi-metallic
4

Similar Publications

This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.

View Article and Find Full Text PDF

Mechanochemistry: Unravelling the Impact of Metal Leaching in Organic Synthesis.

ChemSusChem

January 2025

Universita degli study di cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, SS 554 bivio per Sestu, 09042, Monserrato, ITALY.

Solvent-free techniques have gained considerable attention in recent years due to their environmental advantages and potential to enable chemical reactivities beyond the reach of traditional solution-based methods. Mechanochemistry has emerged as a groundbreaking approach to drive sustainable chemical processes. Despite its promise, some challenges still need to be explored, including the overlooked issue of material leaching during grinding, a phenomenon in which components from milling media or reaction vessels, such as stainless steel, unintentionally alter reaction outcomes.

View Article and Find Full Text PDF

The utilization of zinc oxide nanoparticles is thought to augment wound healing because of their antibacterial characteristics and capacity to stimulate cellular regeneration, especially in instances of minor burn injuries. On the other hand, it has been shown that tissue regeneration is aided by low-power laser therapy via photobiomodulation. Zinc oxide nanoparticles and low-power laser therapy are the two therapeutic modalities that will be compared in this study in order to assess how well they promote healing after burn injury and provide important new information on improved wound care techniques.

View Article and Find Full Text PDF

The focus on energy efficiency to move towards a more sustainable use of resources has intensified efforts to minimize friction and wear in mechanical systems, which account for 23% of the world's energy consumption. In this study, polyoxometalate ionic liquids (POM-ILs) are introduced as environmentally acceptable lubricant additives, for their potential friction-reducing and anti-wear (AW) properties. These compounds, characterized by their complex structures and tunable properties, have been investigated for their tribological performance across base fluids of varying polarities.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!