Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of our study was to estimate the time interval required for integrating the acoustical changes related to sound motion using both psychophysical and EEG measures. Healthy listeners performed direction identification tasks under dichotic conditions in the delayed-motion paradigm. Minimal audible movement angle (MAMA) has been measured over the range of velocities from 60 to 360 deg/s. We also measured minimal duration of motion, at which the listeners could identify its direction. EEG was recorded in the same group of subjects during passive listening. Motion onset responses (MOR) were analyzed. MAMA increased linearly with motion velocity. Minimum audible angle (MAA) calculated from this linear function was about 2 deg. For higher velocities of the delayed motion, we found 2- to 3-fold better spatial resolution than the one previously reported for motion starting at the sound onset. The time required for optimal discrimination of motion direction was about 34 ms. The main finding of our study was that both direction identification time obtained in the behavioral task and cN1 latency behaved like hyperbolic functions of the sound's velocity. Direction identification time decreased asymptotically to 8 ms, which was considered minimal integration time for the instantaneous shift detection. Peak latency of cN1 also decreased with increasing velocity and asymptotically approached 137 ms. This limit corresponded to the latency of response to the instantaneous sound shift and was 37 ms later than the latency of the sound-onset response. The direction discrimination time (34 ms) was of the same magnitude as the additional time required for motion processing to be reflected in the MOR potential. Thus, MOR latency can be viewed as a neurophysiological index of temporal integration. Based on the findings obtained, we may assume that no measurable MOR would be evoked by slowly moving stimuli as they would reach their MAMAs in a time longer than the optimal integration time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2023.108922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!