Climate warming is linked to earlier onset and extended duration of cyanobacterial blooms in temperate rivers. This causes an unpredictable extent of harm to the functioning of the ecosystem and public health. We used Microcystis spp. cell density data monitored for seven years (2016-2022) in ten sites across four temperate rivers of the Republic of Korea to define the phenology of cyanobacterial blooms and elucidate the climatic effect on their pattern. The day of year marking the onset, peak, and end of Microcystis growth were estimated using a Weibull function, and linear mixed-effect models were employed to analyze their relationships with environmental variables. These models identified river-specific temperatures at the beginning and end dates of cyanobacterial blooms. Furthermore, the most realistic models were employed to project future Microcystis bloom phenology, considering downscaled and quantile-mapped regional air temperatures from a general circulation model. Daily minimum and daily maximum air temperatures (mintemp and maxtemp) primarily drove the timing of the beginning and end of the bloom, respectively. The models successfully captured the spatiotemporal variations of the beginning and end dates, with mintemp and maxtemp predicted to be 24℃ (R = 0.68) and 16℃ (R = 0.35), respectively. The beginning and end dates were projected to advance considerably in the future under the Representative Concentration Pathway 2.6, 4.5, and 8.5. The simulations suggested that the largest uncertainty lies in the timing of when the bloom ends, whereas the timing of when blooming begins has less variation. Our study highlights the dependency of cyanobacterial bloom phenology on temperatures and earlier and prolonged bloom development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120928 | DOI Listing |
Ecol Appl
December 2024
Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
Plant vendors generate a commercial species pool, the subset of species in a regional flora that is purchasable. The availability of plant species from commercial vendors can influence the composition and outcomes of conservation, landscaping, and restoration plantings. Although previous research suggests that most plant species are unavailable, there is little information that identifies the plant characteristics associated with commercial availability.
View Article and Find Full Text PDFHarmful Algae
November 2024
Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA.
Elucidating the impact of global climate change on aquatic ecosystems, particularly through phenological shifts in primary producers, is critical for understanding ecological resilience. Here, we focus on the phenological shifts in chlorophyll as a proxy for algae biomass and primary production in aquatic ecosystems, specifically in Lake Erie as well as concentrations of the toxin microcystin. By tracking temporal changes in each, we identified key phenological phases important to estimate duration, magnitude, and intensity of harmful algal blooms (HABs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Oceanography, Dalhousie University, Halifax, NS B3H4R2, Canada.
Marine phytoplankton are fundamental to Earth's ecology and biogeochemistry. Our understanding of the large-scale dynamics of phytoplankton biomass has greatly benefited from, and is largely based on, satellite ocean color observations from which chlorophyll-a (Chla), a commonly used proxy for carbon biomass, can be estimated. However, ocean color satellites only measure a small portion of the surface ocean, meaning that subsurface phytoplankton biomass is not directly monitored.
View Article and Find Full Text PDFAm J Bot
October 2024
Department of Biology, University of Central Florida, Orlando, Florida, United States of America.
Nat Commun
August 2024
MARE - Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016, Lisboa, Portugal.
The Antarctic Peninsula (West Antarctica) marine ecosystem has undergone substantial changes due to climate-induced shifts in atmospheric and oceanic temperatures since the 1950s. Using 25 years of satellite data (1998-2022), this study presents evidence that phytoplankton biomass and bloom phenology in the West Antarctic Peninsula are significantly changing as a response to anthropogenic climate change. Enhanced phytoplankton biomass was observed along the West Antarctic Peninsula, particularly in the early austral autumn, resulting in longer blooms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!