Compositing has been the main approach for material creation via wisely combining material components with different properties. MnO nanosheets (MNSs) with thin 2 D morphology are usually applied to composite molecules or nanomaterials for biosensing and bioimaging applications. However, such composition is actually structurally unmatched, albeit performance matching. Here, a series of benefits merely on the basis of structural match have been unearthed via tailoring MNSs with four sizes by synthesis under controllable hypergravity field. The classical fluorophore-quencher couple was utilized as the subject model, where the soft supramolecular nanogels based on aggregation-induced emission (AIE)-active gold nanoclusters were wrapped by MNSs of strong absorption. By comparative study of one-on-one wrapping and one-to-many encapsulation with geometrical selection of different MNSs, we found that the one-on-one wrapping model protected weakly-bonded nanogels from combination-induced distortion and strengthened nanogel networks via endowing exoskeleton. Besides, wrapping pattern and size-match significantly enhanced the quenching efficiency of MNSs towards the emissive nanogels. More importantly, the well-wrapped nanocomposites had considerable enhanced biological compatibility with much lower cytotoxicity and higher transfection capacity than the untailored MNSs composite and could serve as cellular glutathione detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123690 | DOI Listing |
Front Chem
November 2024
Laboratório Nanotecnologia e Engenharia de Processos-NEP, Universidade de São Paulo, Lorena, São Paulo, Brazil.
Mater Today Bio
December 2024
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
Foods
October 2024
Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China.
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein complex coacervation (HPCC) with a wide range of applications.
View Article and Find Full Text PDFBiomacromolecules
November 2024
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
Chemodynamic therapy (CDT) has been limited by the tumor microenvironment, such as the low concentration of hydrogen peroxide (HO). The combination of therapeutic strategies that increase HO with CDT can synergistically enhance the therapeutic effect. Herein, a novel supramolecular PEG-DNA-ferrocene nanogel that can codeliver glucose oxidase (GOx) and the hypoxia-activable prodrug tirapazamine (TPZ) was developed to synergistically amplify CDT via cascade reactions.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA.
Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!