A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resistance training up-regulates Smyd1 expression and inhibits oxidative stress and endoplasmic reticulum stress in the heart of middle-aged mice. | LitMetric

Persistent oxidative stress and endoplasmic reticulum (ER) stress are the primary mechanisms of age-related cardiovascular diseases. Although exercise training is viewed as an effective anti-aging approach, further exploration is needed to identify the mechanisms and functional targets. In this study, the impact of resistance training (RT) on the expression of Smyd1, the levels of reactive oxygen species (ROS) and the expression of ER stress-related protein in the hearts of mice of different ages were assessed. In addition, the role of Smyd1 in the aging-induced oxidative stress and ER stress were evaluated in d-galactose (D-gal)-treated H9C2 cells. We demonstrated that RT in middle age increased the expression of Smyd1 and restricted heart aging-induced ER stress. Overexpression of Smyd1 restrained oxidative stress and ER stress in D-gal-treated H9C2 cells, while the inhibition of Nrf2 and Smyd1 escalated ER stress. These findings demonstrate that Smyd1 has significant impact in regulating age-related ER stress. RT in middle age can up-regulates Smyd1 expression and inhibits oxidative stress and ER stress in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2023.11.029DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
stress
13
stress stress
12
resistance training
8
smyd1
8
up-regulates smyd1
8
smyd1 expression
8
expression inhibits
8
inhibits oxidative
8
stress endoplasmic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!