Toward a comprehensive understanding of alicyclic compounds: Bio-effects perspective and deep learning approach.

Sci Total Environ

The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China. Electronic address:

Published: February 2024

The escalating use of alicyclic compounds in modern industrial production has led to a rapid increase of these substances in the environment, posing significant health hazards. Addressing this challenge necessitates a comprehensive understanding of these compounds, which can be achieved through the deep learning approach. Graph neural networks (GNN) known for its' extraordinary ability to process graph data with rich relationships, have been employed in various molecular prediction tasks. In this study, alicyclic molecules screened from PCBA, Toxcast and Tox21 are made as general bioactivity and biological targets' activity prediction datasets. GNN-based models are trained on the two datasets, while the Attentive FP and PAGTN achieve best performance individually. In addition, alicyclic carbon atoms make the greatest contribution to biological activity, which indicate that the alicycle structures have significant impact on the carbon atoms' contribution. Moreover, there are terrific number of active molecules in other public datasets, indicates that alicyclic compounds deserve more attention in POPs control. This study uncovered deeper structural-activity relationships within these compounds, offering new perspectives and methodologies for academic research in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168927DOI Listing

Publication Analysis

Top Keywords

alicyclic compounds
12
comprehensive understanding
8
deep learning
8
learning approach
8
alicyclic
5
compounds
5
understanding alicyclic
4
compounds bio-effects
4
bio-effects perspective
4
perspective deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!