Removing polyfluoroalkyl substances (PFAS) from wastewater with mixed matrix membranes.

Sci Total Environ

School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Published: February 2024

Polyfluoroalkyl and perfluoroalkyl (PFAS) chemicals are fluorinated and exhibit complicated behavior. They are determined and highly resistant to ecological modifications that render plants ecologically robust. Thermal stability and water and oil resistance are examples of material qualities. Their adverse consequences are causing increasing worry due to their bioaccumulative nature in humans and other creatures. Direct data indicates that PFAS exposure in humans causes endocrine system disruption, immune system suppression, obesity, increased cholesterol, and cancer. Several PFASs are present in drinking water at low doses and may harm people. These cancer-causing PFAS have caused concern for water bodies all around the globe. Analytical techniques are used to identify and measure PFAS in an aqueous medium (membrane). Furthermore, a deeper explanation is provided for PFAS removal methods, including mixed matrix membrane (MMM) technology. By removing over 99 % of the PFAS from wastewater, MMMs may effectively remove PFAS from sewage when the support matrix contains adsorbing components. Furthermore, we consider several factors affecting the removal of PFAS and practical sorption methods for PFAS onto various adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168881DOI Listing

Publication Analysis

Top Keywords

pfas
10
pfas wastewater
8
mixed matrix
8
removing polyfluoroalkyl
4
polyfluoroalkyl substances
4
substances pfas
4
wastewater mixed
4
matrix membranes
4
membranes polyfluoroalkyl
4
polyfluoroalkyl perfluoroalkyl
4

Similar Publications

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

Immobilization of per- and polyfluorinated alkyl substances (PFAS) from field contaminated groundwater by a novel organo-clay vs. colloidal activated carbon under flow conditions.

J Hazard Mater

January 2025

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany. Electronic address:

Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!