Solvothermal liquefaction (STL) is a thermochemical conversion technique that employs solvents other than water to transform waste plastics into valuable compounds. The objective of this study was to explore the potential use of supercritical toluene, a nonpolar solvent, for the depolymerization of four electrical waste (e-waste) thermoplastics, namely polyamide (PA), polycarbonate (PC), polyoxymethylene (POM), and polyether ether ketone (PEEK), into liquid products. Depolymerization experiments were carried out in batch reactors at three reaction temperatures (325, 350, and 375 °C), and three residence times (1, 3, and 6 h). The findings revealed that increasing STL temperature and extending the reaction time enhances the depolymerization of e-waste thermoplastics. The highest STL conversation (100 %) was observed for POM, and the lowest STL conversation (32.23 %) was observed for PEEK. Additionally, the ultimate analysis showed that the liquid product obtained from STL at 375 °C and 6 h exhibited higher heating values (HHV) within the range of 31.43 to 35.31 MJ/kg. Thermogravimetric analysis (TGA) demonstrated that the boiling point distributions of liquid products are highly dependent on thermoplastic type. Finally, the reaction mechanisms of STL for PA, PC, POM, and PEEK were proposed based on gas chromatography-mass spectrometry (GCMS) analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.11.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!