Endometrial receptivity is an important factor that influences embryo implantation. Thus, it is important to identify an applicable approach to improve endometrial receptivity in women undergoing assisted reproductive technology. Recently, growing evidence has indicated that intrauterine platelet-rich plasma (PRP) infusion is an effective method to obtain a satisfactory reproductive outcome by increasing endometrial thickness and improving endometrial receptivity. Therefore, the present review aims to outline the possible mechanisms of PRP on endometrial receptivity and summarize the present literature on the effects of PRP therapy in improving endometrial receptivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-023-2816-4 | DOI Listing |
Nat Commun
January 2025
Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Understanding human endometrial dynamics in the establishment of endometrial receptivity remains a challenge, which limits early diagnosis and treatment of endometrial-factor infertility. Here, we decode the endometrial dynamics of fertile women across the window of implantation and characterize the endometrial deficiency in women with recurrent implantation failure. A computational model capable of both temporal prediction and pattern discovery is used to analyze single-cell transcriptomic data from over 220,000 endometrial cells.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFJ Obstet Gynaecol
December 2025
Department of Gynecology, Zunhua People's Hospital, Zunhua, Hebei, China.
Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Objective: Polycystic ovary syndrome (PCOS) is an important factor contributing to infertility in reproductive-aged women. Hyperandrogenism (HA) plays an important role in the pathogenesis of PCOS. This study was conducted to explore the follicular development and endometrial receptivity of different androgen phenotypes in reproductive-aged patients with PCOS.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Reproductive Center of Integrated Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: The blastocyst-stage embryo has been considered more advantageous for increasing the cumulative live birth rate (CLBR) at fresh embryo transfer (ET) compared to the cleavage-stage embryo. However, it remains uncertain whether this advantage extends to specialized subpopulations, such as women with thin endometrium (TE), who are characteristic of impaired endometrial receptivity. Thus, this study aims to evaluate the difference in the CLBR between cleavage-stage and blastocyst-stage embryos at fresh ET specifically in women with TE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!