Context.—: Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology.
Objective.—: To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation.
Data Sources.—: An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks.
Conclusions.—: Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5858/arpa.2023-0042-CP | DOI Listing |
Lung Cancer
January 2025
Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).
Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.
J Speech Lang Hear Res
January 2025
Department of Psychology, University of Western Ontario, London, Canada.
Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.
Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.
J Craniofac Surg
October 2024
Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, Italy.
Background: With the use of machine learning algorithms, artificial intelligence (AI) has become a viable diagnostic and treatment tool for oral cancer. AI can assess a variety of information, including histopathology slides and intraoral pictures.
Aim: The purpose of this systematic review is to evaluate the efficacy and accuracy of AI technology in the detection and diagnosis of oral cancer between 2020 and 2024.
Neuroradiol J
January 2025
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFAm J Phys Med Rehabil
December 2024
Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226.
Predicting discharge destination for patients at inpatient rehabilitation facilities is important as it facilitates transitions of care and can improve healthcare resource utilization. This study aims to build on previous studies investigating discharges from inpatient rehabilitation by employing machine learning models to predict discharge disposition to home versus non-home and explore related factors. Fifteen machine learning models were tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!