Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly efficient near-infrared (NIR) luminescent nanomaterials are urgently required for portable mini or micro phosphors-converted light-emitting diodes (pc-LEDs). However, most existing NIR-emitting phosphors are generally restricted by their low photoluminescence (PL) quantum yield (QY) or large particle size. Herein, a kind of highly efficient NIR nanophosphors is developed based on copper indium selenide quantum dots (CISe QDs). The PL peak of these QDs can be exquisitely manipulated from 750 to 1150 nm by altering the stoichiometry of Cu/In and doping with Zn . Their absolute PLQY can be significantly improved from 28.6% to 92.8% via coating a ZnSe shell. By combining the phosphors with a commercial blue chip, an NIR pc-LED is fabricated with remarkable photostability and a record-high radiant flux of 88.7 mW@350 mA among the Pb/Cd-free QDs-based NIR pc-LEDs. Particularly, such QDs-based nanophosphors acted as excellent luminescence converter for NIR micro-LEDs with microarray diameters below 5 µm, which significantly exceeds the resolutions of current commercial inkjet display pixels. The findings may open new avenues for the exploration of highly efficient NIR micro-LEDs in a variety of applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202311011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!