We proposed and demonstrated a metasurface based terahertz polarizer consisting of an optically responsive nanocomposite and a flexible base body, which fulfilled the function of linear-to-circular polarization conversion in transmission mode. Meanwhile, as the dynamic and stretchable materials enable the active manipulation of conversion points, evident frequency shifts for circular polarization transformation were discovered by applying laser irradiation and tension. Hence the modulation of conversion points covered a broadband with combination of those two external excitations. This THz polarization convertor may find its applications in polarization controls and beam steering, which also provides a low-cost and large-scale manufacturable method to achieve versatile active THz devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.507293DOI Listing

Publication Analysis

Top Keywords

polarization convertor
8
conversion points
8
polarization
5
tunable linear-to-circular
4
linear-to-circular terahertz
4
terahertz polarization
4
convertor enabled
4
enabled plasmonic
4
plasmonic nanocomposite
4
nanocomposite metasurface
4

Similar Publications

PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy.

Micromachines (Basel)

December 2024

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

The effect of residual stress or heat on ferroelectrics used to convert photons into electricity was investigated. The data analysis reveals that when the PET-PZT piezoelectric transducer is UV-irradiated with a 405 nm wavelength, it becomes a photon-heat-stress electric energy converter and capacitator. Our objective was to evaluate the PET-PZT photon-heat-stress electric energy conversion performance and the role of the light's wavelength and intensity.

View Article and Find Full Text PDF

In this Letter, we propose and demonstrate an integrated polarizer on thin film lithium niobate (TFLN). The polarizer consists of a width-tapered 180° Euler bending waveguide featuring thin thickness and bilevel mode convertors with silica cladding. Notably, the TE mode is efficiently confined in the waveguide, while the TM mode confronts significant bending losses.

View Article and Find Full Text PDF

A high-power all-fiber radially polarized laser system is demonstrated, in which an integrated nanograting mode convertor (S-wave plate) is used for the generation of radially polarized beam. Experimentally, a 1-W radially polarized beam was used as the seed laser, whose mode purity and mode extinction ratio (MER) were 96.5% and 98.

View Article and Find Full Text PDF

An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor.

Front Optoelectron

December 2023

College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Polarization, a fundamental behavior of electromagnetic waves, holds immense potential across diverse domains such as environmental monitoring, biomedicine, and ocean exploration. However, achieving efficient modulation of terahertz waves with wide operational bandwidth poses significant challenges. Here, we introduce an all-silicon polarization converter designed specifically to operate in the terahertz range of the electromagnetic spectrum.

View Article and Find Full Text PDF

We proposed and demonstrated a metasurface based terahertz polarizer consisting of an optically responsive nanocomposite and a flexible base body, which fulfilled the function of linear-to-circular polarization conversion in transmission mode. Meanwhile, as the dynamic and stretchable materials enable the active manipulation of conversion points, evident frequency shifts for circular polarization transformation were discovered by applying laser irradiation and tension. Hence the modulation of conversion points covered a broadband with combination of those two external excitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!