Doubled haploid technology, which enables the generation of homozygous lines in a single step, is one of the modern tools being employed for accelerating breeding processes in different crops. In rice, a globally important staple food crop, doubled haploid production through androgenesis is increasingly being employed in breeding programs. Amongst the androgenic rice lines, doubled haploids are formed spontaneously at about 50-60%, while the remaining 40-50% of plants remain as haploids. As haploids cannot be easily identified, it is routine to grow all the rice androgenic lines till maturity and harvest the seeds from the fertile doubled haploids. Therefore, the methods that facilitate easy identification of haploids at an early developmental stage in rice would enable treatment of such haploid lines with colchicine, to increase the efficiency of doubled haploid production. Further, it would also help in eliminating the operational cost involved in maintaining them till maturity. In the above context, a systematic study to identify easily observable physiological and morphological differences between haploid and doubled haploid rice lines was undertaken. Rice haploids were found to be noticeably different from doubled haploids in photosynthetic rate, transpiration rate, stomatal conductance, and morphology of lodicules, stigma and style, features which have not been reported before. Most importantly, rice haploids invariably have acute leaf apex which is easily distinguishable from the doubled haploids that have attenuated leaf apex shape. Very high per cent accuracy in the prediction of ploidy level was observed when haploids were identified at an early developmental stage based on leaf apex shape, and the results verified with flow cytometry perfectly matches with leaf apex shape. The study establishes 'acute leaf apex' shape as an accurate visual marker to rapidly identify haploid rice lines at an early developmental stage in a cost-effective manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691067 | PMC |
http://dx.doi.org/10.1186/s13007-023-01085-z | DOI Listing |
Int J Mol Sci
January 2025
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
is a member of the cruciferous family with rich glucosinolate (GSL) content, particularly glucobrassicin (3-indolylmethyl glucosinolate, I3M), that can be metabolized into indole-3-carbinol (I3C), a compound with promising anticancer properties. To unravel the genetic mechanism influencing I3C content in rapeseed seedlings, a comprehensive study was undertaken with a doubled haploid (DH) population. By quantitative trait loci (QTL) mapping, seven QTL that were located on A01, A07, and C04 were identified, with the most significant contribution to phenotypic variation observed on chromosome A07 (11.
View Article and Find Full Text PDFProtoplasma
January 2025
College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, China.
Microspore culture is an efficient and rapid method that produces doubled haploid (DH) lines for hybrid breeding in crops and vegetables. However, the low frequency of microspore embryogenesis and spontaneous diploidization in Chinese kale still require improvement. In the present work, an efficient microspore culture protocol was constructed and used for DH producing in Chinese kale breeding.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea.
Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.
View Article and Find Full Text PDFFront Genet
January 2025
National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.
The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!