This study is numerically executed to investigate the influence of heat generation or absorption on free convective flow and temperature transport within a wavy triangular enclosure filled by the nanofluid taking the Brownian effect of nanoparticles. The water (HO) is employed as base fluid and copper (Cu) as nanoparticles for making effective Cu-HO nanofluids. The perpendicular sinusoidally wavy wall is cooled at low temperature while the horizontal bottom sidewall is heated non-uniformly (sinusoidal). The inclined wall of the enclosure is insulated. The governing dimensionless non-linear PDEs are executed numerically with the help of the Galerkin weighted residual type finite element technique. The numerically simulated results are displayed through average Nusselt number, isothermal contours, and streamlines for the various model parameters such as Hartmann number, Rayleigh number, heat generation or absorption parameter, nanoparticles volume fraction, and undulation parameter. The outcomes illustrate that the temperature transport rate augments significantly for the enhancement of Rayleigh number as well as nanoparticles volume fraction whereas reduces for the increment of Hartman number. The heat transfer is significantly influenced by the size, shape, and Brownian motion of the nanoparticles. The rate of heat transport increases by 20.43% considering the Brownian effect for 1% nanoparticle volume. The thermal performance increases by 8.66% for the blade shape instead of the spherical shape of nanoparticles. In addition, heat transfer is impacted by the small size of nanoparticles. The thermal transport rate increases by 35.87% when the size of the nanoparticles reduces from 100 to 10 nm. Moreover, the rate of heat transmission increases efficiently as the undulation parameter rises. It is also seen that a crucial factor in the flow of nanofluids and heat transmission is the heat generation/absorption parameter that influences temperature distribution, heat transfer rates, and overall thermal performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692091PMC
http://dx.doi.org/10.1038/s41598-023-48704-2DOI Listing

Publication Analysis

Top Keywords

heat transfer
16
heat
11
heat generation/absorption
8
wavy triangular
8
filled nanofluid
8
heat generation
8
generation absorption
8
temperature transport
8
nanoparticles
8
rayleigh number
8

Similar Publications

In semiconductor inspection equipment, a chuck used to hold a wafer is equipped with a cooling or heating system for temperature uniformity across the surface of the wafer. Surface temperature uniformity is important for increasing semiconductor inspection speed. Triply periodic minimal surfaces (TPMSs) are proposed to enhance temperature uniformity.

View Article and Find Full Text PDF

Surface Wettability Modeling and Predicting via Artificial Neural Networks.

Materials (Basel)

January 2025

Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland.

Surface wettability, defined by the contact angle, describes the ability of a liquid to spread over, absorb or adhere to a solid surface. Surface wetting analysis is important in many applications, such as lubrication, heat transfer, painting and wherever liquids interact with solid surfaces. The behavior of liquids on surfaces depends mainly on the texture and chemical properties of the surface.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.

View Article and Find Full Text PDF

A Full Green, Sustainable Paper-Based Packaging Material with High-Strength, Water Resistance, and Thermal Insulation.

Polymers (Basel)

December 2024

Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.

Paper-based packaging materials have gained attention from academia and industry for their outstanding environmental sustainability advantages. However, they still encounter major challenges, such as low mechanical strength and inadequate functionality, hindering the replacement of unsustainable packaging materials. Inspired by the remarkable strength of trees provided by cellulose fibers and the water and heat protection of trees provided by bark, this study developed a new biomass-based packaging material (SNC-C) that combines strength, thermal insulation, and water resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!