An overview of microplastic pollution in the environment over the megacity of Shanghai during 2013-2022.

Sci Total Environ

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Published: February 2024

Microplastics (MPs) are emerging pollutants that have been globally found in the environment, and have become a focus of intensive management for the Shanghai government in China. Although there are several studies reporting the abundance of microplastics (MPs) in different matrices in Shanghai city, the general data are still limited. This work comprehensively reviews microplastic (MP) pollution in the water, sediment, atmosphere, and soil of Shanghai during 2013-2022. A summary of characteristics such as the abundance, shape, and polymer composition of MPs is presented. Additionally, the pollution trends, traceability, and ecological risks of MPs are analyzed and evaluated. Based on the analytical results, we find that the inland water in Shanghai city is the most contaminated with the highest abundance of MPs at 14.76 × 10 particles/m on average, while the abundances of MPs in the external water, inland sediment, external sediment, indoor atmosphere, outdoor atmosphere, inland soil, and external soil are 2.78 × 10 particles/m, 0.80 × 10 particles/kg, 1.37 × 10 particles/kg, 0.03 × 10 particles/m, 0.08 × 10 particles/m, 0.27 × 10 particles/kg, and 0.18 × 10 particles/kg, respectively. Polyethylene and polypropylene are the top two detected polymer compositions of MPs. Results of ecological risk assessment using risk index and pollution load index models indicate that the risks of MPs in the water and sediment of the Yangtze Estuary are high. It is noteworthy that the abundances of MPs at the junction site of Suzhou Creek and the Huangpu River as well as in the Yangtze Estuary exhibited an increasing trend between 2017 and 2019. This work contributes to a comprehensive overview of MPs in the environment of Shanghai city during 2013-2022 and provides important data for local governments to develop urgent strategies for the management of MP pollution. However, more investigations are increasingly needed for better understand the production, migration, ecological risk, and management of MPs in the environment of Shanghai city.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168986DOI Listing

Publication Analysis

Top Keywords

shanghai city
16
mps
11
microplastic pollution
8
shanghai 2013-2022
8
microplastics mps
8
water sediment
8
risks mps
8
abundances mps
8
ecological risk
8
yangtze estuary
8

Similar Publications

KDIGO 2025 clinical practice guideline for the evaluation, management, and treatment of autosomal dominant polycystic kidney disease (ADPKD): executive summary.

Kidney Int

February 2025

Institute of Physiology, University of Zurich, Zurich, Switzerland; Division of Nephrology, Cliniques universitaires Saint-Luc, UCLouvain Medical School, Brussels, Belgium. Electronic address:

The Kidney Disease: Improving Global Outcomes (KDIGO) 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) represents the first KDIGO guideline on this subject. Its scope includes nomenclature, diagnosis, prognosis, and prevalence; kidney manifestations; chronic kidney disease (CKD) management and progression, kidney failure, and kidney replacement therapy; therapies to delay progression of kidney disease; polycystic liver disease; intracranial aneurysms and other extrarenal manifestations; lifestyle and psychosocial aspects; pregnancy and reproductive issues; pediatric issues; and approaches to the management of people with ADPKD. The guideline has been developed with patient partners, clinicians, and researchers around the world, with the goal to generate a useful resource for healthcare providers and patients by providing actionable recommendations.

View Article and Find Full Text PDF

Arabinoxylan-catechin complexes were synthesized using two eco-friendly methods: cold plasma and ultrasonic treatments. Their physicochemical, structural and functional properties were evaluated. Cold plasma and ultrasonic treatments did not significantly alter the molecular structure of arabinoxylan, although a decrease Mw was noticed.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Fully Atomistic Molecular Dynamics Simulation of Ice Nucleation Near an Antifreeze Protein.

J Am Chem Soc

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.

Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).

View Article and Find Full Text PDF

This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!