A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electro-flocculation of aquaculture wastewater microalgal communities reduces nutrient loading. | LitMetric

Electro-flocculation of aquaculture wastewater microalgal communities reduces nutrient loading.

Bioresour Technol

Centre for Machine Learning, Networking and Education Technology (CML-NET), School of Engineering and Technology, CQUniversity, Yaamba Road, Rockhampton, Queensland 4701, Australia.

Published: February 2024

Land-based aquaculture provides dietary protein to the world's population in a sustainable way, but issues related to release of nitrogen rich wastewater limits its expansion. Sedimentation of naturally occurring microalgae that assimilate excess nitrogen, is slow and land intensive. Electro-flocculation, used in wastewater treatment processes, is a potential alternative for aquaculture. Trials of different electro-flocculation configurations applied to three prawn farm pondwater samples containing varying microalgal assemblages are reported. In 64 % of trials, electro-flocculation reduced total nitrogen (TN) and dissolved inorganic nitrogen (DIN) loads within regulatory limits.TN was reduced up to 83.2 % (10.93 to 1.83 mg.L) within 20 mins in stationary water, and DIN to 90.6 % (3.19 to 0.30 mg.L) in 102 mins trials in flowing water. Bellerochea andGloeocapsa spp. were dominant in wastewater. The role of microalgal community composition on flocculation is discussed, including evidence Bellerocheapromotes flocculation. This study confirmed electro-flocculation quickly reduces TN and DIN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130109DOI Listing

Publication Analysis

Top Keywords

trials electro-flocculation
8
electro-flocculation
5
electro-flocculation aquaculture
4
wastewater
4
aquaculture wastewater
4
wastewater microalgal
4
microalgal communities
4
communities reduces
4
reduces nutrient
4
nutrient loading
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!