Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting.

Bioresour Technol

School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140, Finland; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China. Electronic address:

Published: February 2024

This research aims to explore the degradation properties of polyethylene terephthalate (PET) by PET hydrolase (WCCG) in high-temperature composting and its impact on microbial communities. PET degradation, composting parameters and microbial communities were assessed in 220 L sludge composters with PET and WCCG using high-throughput sequencing. Results showed that WCCG addition led to a deceleration of the humification process and a reduction in the relative abundance of thermophilic genera. Potential PET degrading microbiota, e.g. Acinetobacter, Bacillus, were enriched in the plastisphere in the composters where PET reduced by 26 % without WCCG addition. The external introduction of the WCCG enzyme to compost predominantly instigates a chemical reaction with PET, concurently curtailing the proliferation of plastic-degrading bacteria, leading to a 35 % degradation of PET. Both the WCCG enzyme and the microbiota associated with plastic-degradation showed the potential for reducing PET, offering a novel method for mitigating pollution caused by environmental microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130108DOI Listing

Publication Analysis

Top Keywords

pet
9
polyethylene terephthalate
8
high-temperature composting
8
microbial communities
8
composters pet
8
pet wccg
8
wccg addition
8
wccg enzyme
8
wccg
6
hydrolase plastic-degrading
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!