Sodium chloride modulated construction of hollow Co/CoO heterostructure with enhanced mesoscale diffusion towards overall water splitting.

J Colloid Interface Sci

Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. Electronic address:

Published: March 2024

Fabricating an efficient electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) isthe most challenging task for overall water splitting. Herein, we utilized the confinement effect of molten sodium chloride (NaCl) to controllably prepare hollow Co/CoO nanoparticles embedded into nitrogen-doped carbon (H-Co/CoO-NC). Experimental and theoretical investigations revealed that the interfacial interaction within Co/CoO heterostructure played a pivotal role in modulating the electronic structure and facilitating the electron transfer. Meanwhile, the superiority of hollow nanostructure could promote the mesoscale mass diffusion. Remarkably, the as-prepared H-Co/CoO-NC catalyst achieved the low overpotentials of 316 mV and 252 mV towards OER and HER, respectively, which delivered overall water splitting with the potential of 1.76 V at a current density of 10 mA cm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.11.162DOI Listing

Publication Analysis

Top Keywords

water splitting
12
sodium chloride
8
hollow co/coo
8
co/coo heterostructure
8
evolution reaction
8
chloride modulated
4
modulated construction
4
construction hollow
4
heterostructure enhanced
4
enhanced mesoscale
4

Similar Publications

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.

View Article and Find Full Text PDF

Far-Ultraviolet Plexciton Formation in Water-Covered Indium Clusters.

J Phys Chem Lett

January 2025

Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.

In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!