Doxorubicin is a chemotherapeutic agent used for more than fifty years to treat a great variety of cancers in both children and adults. Despite hereof, pharmacokinetic knowledge is almost solely based on systemic plasma concentrations. Microdialysis is a catheter-based pharmacokinetic sampling tool enabling simultaneous target site sampling of unbound molecules of interest. The aim of this study was to thoroughly evaluate the feasibility of applying microdialysis for sampling of Doxorubicin in both in vitro experiments and an in vivo setting. Doxorubicin relative recovery by gain and by loss was tested for different catheter types, perfusion fluids, concentrations and collection vials. Adsorption tests revealed polystyrene/santoprene vials to be the biggest contributor of unwanted adsorption between Doxorubicin and the microdialysis equipment, and confirmed LoBind Eppendorf tubes to be a suitable alternative. The methodological combination of polyamide membranes, saline as perfusion fluid and LoBind Eppendorf sampling tubes demonstrated no statistically significant differences for relative recovery by gain and by loss, and the relative recovery was also found to be concentration independent. We conclude, that a proper microdialysis set-up can be used to collect samples containing concentrations of the chemotherapeutic drug Doxorubicin in vitro and in vivo, which encourage future pharmacokinetic studies to evaluate current treatment regimens to find the most effective and least toxic anti-neoplastic treatment for the patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115872 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!