Hole behavior captured by analysis of instantaneous amplitude and phase of sarcosynced oscillations reveals wave characteristics of sarcomeric oscillations.

Biochem Biophys Res Commun

Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan; Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi, 487-8501, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, 464-8601, Japan. Electronic address:

Published: January 2024

In this study, we performed signal analysis based on instantaneous amplitude and phase of sarcomeric oscillations, which are generated by skeletal muscle under constant calcium concentration conditions and in which sarcomeres repeatedly contract and relax autonomously. In addition to the changes in sarcomere length that have been attracting attention, we named the Z-line oscillations that partition sarcomeres sarcosynced oscillations, and analyzed their instantaneous amplitude and phase. As a result, the behavior of pairs of sarcosynced oscillations and sarcomeric oscillations, which are produced when propagating waves propagate in one direction or collide, was clearly visualized. By focusing on the behavior of the hole, which is a dip in the instantaneous amplitude accompanied by a sudden jump in the instantaneous phase in sarcosynced oscillations, we were able to discern the wave characteristics. Transient disruption occurred in the propagating waves even when they traveled in one direction. Its properties were captured by the sarcomeric defect hole (SD hole), a dip in the instantaneous amplitude accompanied by a jump in the instantaneous phase in sarcosynced oscillations. When propagating waves collide, the collision site, its persistence, movement, and disappearance process are captured as sarcomeric collision holes (SC holes) of sarcosynced oscillations. These holes are important indicators for understanding the oscillation properties of sarcomeres. In conclusion, although sarcosynced oscillations and sarcomeric oscillations are closely related, they exhibit different oscillations, and the study of the SD holes and SC holes caused by them will contribute to a detailed understanding of the muscle characteristics of sarcomeres. This finding has important implications for improving our understanding of the efficiency of muscle function and its regulatory mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.149339DOI Listing

Publication Analysis

Top Keywords

sarcosynced oscillations
28
instantaneous amplitude
20
sarcomeric oscillations
16
oscillations
13
amplitude phase
12
phase sarcosynced
12
propagating waves
12
wave characteristics
8
oscillations study
8
oscillations sarcomeric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!