Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113674 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Membranes (Basel)
December 2024
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.
Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow, 30-059, Poland.
Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!