Photothermal antibacterial MoS composited chitosan hydrogel for infectious wound healing.

Biomater Adv

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China. Electronic address:

Published: January 2024

AI Article Synopsis

  • Pathological bacterial infections present a significant public health threat, exacerbated by increasing antibiotic resistance due to overuse.
  • Researchers developed a composite hydrogel dressing called LAMC-MoS@PDA, combining dopamine-assisted molybdenum disulfide with modified chitosan, which shows strong photothermal conversion and a photothermal efficiency of 26.29%.
  • Under near-infrared light, this hydrogel demonstrated nearly 100% antibacterial effectiveness against key bacteria and significantly promoted wound healing in infected rats, indicating its potential for clinical application in treating infections.

Article Abstract

Pathological bacterial infection poses a serious threat to public health security. The excessive use of antibiotics has resulted in a serious decline in treatment effect and bacterial resistance. For the treatment of infected wounds, we compounded dopamine-assisted exfoliated molybdenum disulfide (MoS@PDA) into lipoic acid modified chitosan (LAMC) to obtain a composite hydrogel dressing (LAMC-MoS@PDA). LAMC-MoS@PDA hydrogels exhibited excellent photothermal conversion ability and the LAMC-MoS@PDA2 group (0.3 wt%) has a photothermal conversion efficiency of 26.29 %. Meanwhile, they showed good biocompatibility and ROS scavenging activity in vitro. Photothermal therapy usually utilizes photothermal agents to convert near-infrared light into heat energy for bacterial cell membrane destruction and bacterial protein inactivation. Under the near-infrared light irradiation, the antibacterial ratio of LAMC-MoS@PDA hydrogels against Staphylococcus aureus and Escherichia coli reached nearly 100 %, and the morphology of the bacteria showed obvious contraction and cleavage. The hydrogels also showed an excellent antibacterial effect and wound healing promotion in the infected wound of rats. In particular, the LAMC-MoS@PDA2 (+) group (with NIR) showed almost complete wound closure after 14 days, indicating that the LAMC-MoS@PDA hydrogels have great potential in clinical anti-infected treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213701DOI Listing

Publication Analysis

Top Keywords

lamc-mos@pda hydrogels
12
wound healing
8
photothermal conversion
8
lamc-mos@pda2 group
8
near-infrared light
8
photothermal
5
photothermal antibacterial
4
antibacterial mos
4
mos composited
4
composited chitosan
4

Similar Publications

Attachment of Hydrogel Patches to Eye Tissue through Gel Transfer using Flexible Foils.

ACS Appl Mater Interfaces

January 2025

Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.

Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Chinese herbal medicine-inspired construction of multi-component hydrogels with antibacterial and wound-healing-promoting functions.

J Mater Chem B

January 2025

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

Chinese herbal medicine (CHM) has offered a great treasure and source of inspiration for developing innovative medicinal materials and therapy. In this work, inspired by the macroscopic compatibility of and in CHM, the puerarin (PUE) and CaSO (Ca) as the main constituents, respectively, from the two herbs are co-assembled into two-component molecular hydrogels. Such two-component gels exhibited enhanced mechanical properties compared with the single-component PUE gel due to the introduction of crosslinking hydrogen bonds between PUE and Ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!