AI Article Synopsis

Article Abstract

Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arcmed.2023.102916DOI Listing

Publication Analysis

Top Keywords

potential therapeutic
12
clavulanic acid
8
central nervous
8
nervous system
8
disease models
8
clav
6
acid potential
4
therapeutic effects
4
effects central
4
system clavulanic
4

Similar Publications

Claudins as diagnostic tools and therapeutic targets-Glimpse of the horizon.

Cancer Treat Rev

January 2025

Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK. Electronic address:

Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.

View Article and Find Full Text PDF

Surface receptor-targeted Protein-based nanocarriers for drug delivery: Advances in cancer therapy.

Nanotechnology

January 2025

Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.

Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.

View Article and Find Full Text PDF

Objective: To examine the effect of physiologic insulin resensitization (PIR) on the cost of treating patients with diabetes and chronic kidney disease (CKD).

Study Design: The mean 1-year cost of treating 66 Medicare Advantage patients with diabetes and CKD who were receiving PIR was compared with that of treating 1301 Medicare Advantage patients with diabetes and CKD not receiving PIR. Differences in disease severity were compared using mean risk adjustment factor scores.

View Article and Find Full Text PDF

Background: The prognosis for patients with several types of cancer has substantially improved following the introduction of immune checkpoint inhibitors, a novel type of immunotherapy. However, patients may experience symptoms both from the cancer itself and from the medication. A prototype of the eHealth tool Cancer Patients Better Life Experience (CAPABLE) was developed to facilitate symptom management, aimed at patients with melanoma and renal cell carcinoma treated with immunotherapy.

View Article and Find Full Text PDF

Despite the acknowledged merits of precision oncology (PO) and its increasing global implementation, its full potential for advancing care and prevention remains unrealized. The benefits are currently accessible to only limited patient segments because of multifaceted barriers. Successful implementation hinges on various factors-scientific complexities not limited to technical, clinical, regulatory, economic, administrative, and health care policy-related challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!