Benzothiozinone derivatives with anti-tubercular Activity-Further side chain investigation.

Eur J Med Chem

College of Pharmaceutical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China. Electronic address:

Published: January 2024

AI Article Synopsis

  • - A set of new benzothiozinone (BTZ) derivatives was created and tested for their effectiveness against tuberculosis, showing significantly improved activity compared to earlier versions.
  • - The study found that changing the ring structure of the compounds to either alkynyl or vinyl linkers not only enhanced antimycobacterial potency but also influenced their metabolic stability and overall drug characteristics.
  • - Two specific compounds, A1 and A11, exhibited low minimum inhibitory concentrations (MICs) and better metabolic stability, with A11 proving effective in treating acute tuberculosis in a mouse model.

Article Abstract

A series of novel benzothiozinone (BTZ) derivatives were designed, prepared and evaluated for antituberculosis activity. Specifically, the BTZ pharmacophore is retained and the previous heterocyclic ring linker is replaced by alkynyl or vinyl linker, the resulting compounds displayed about 5-fold improved antimycobacterial activity. We further revealed that the linker attached tail group affects the compound metabolic stability, potency and other drug like properties. This work led to the discovery of two compounds (A1 and A11) with acceptable low MICs and improved metabolic stability. The representative compound A11 demonstrated bactericidal efficacy in an acute TB infection mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115976DOI Listing

Publication Analysis

Top Keywords

metabolic stability
8
benzothiozinone derivatives
4
derivatives anti-tubercular
4
anti-tubercular activity-further
4
activity-further side
4
side chain
4
chain investigation
4
investigation series
4
series novel
4
novel benzothiozinone
4

Similar Publications

Evidence regarding the relationship between free triiodothyronine (FT3) and low-density lipoprotein cholesterol (LDL-C) remains limited. This study aimed to evaluate the association between FT3 and LDL-C levels in patients with type 2 diabetes mellitus (T2DM) who exhibit normal thyroid function. Between June 2022 and October 2023, a total of 3011 inpatients with T2DM and euthyroid status were continuously and non-selectively recruited from a Chinese hospital.

View Article and Find Full Text PDF

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

Sulfilimines from a Medicinal Chemist's Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery.

J Med Chem

January 2025

Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany.

While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!