Adhesive properties of plasma-circulating and platelet-derived microvesicles from healthy individuals.

Thromb Res

Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Moscow State University, Moscow, Russia.

Published: January 2024

Background: Microvesicles (MVs) produced by platelets upon activation possess high procoagulant activity and represent a possible thrombotic risk marker. However, direct experimental evaluation of the adhesive properties of MVs and their potential role in thrombus growth is lacking.

Objectives: We investigated integrin αβ status and adhesive properties of plasma-circulating and platelet-derived MVs from healthy individuals.

Methods: MVs were isolated from whole blood or produced from activated platelets. Flow cytometry was used for quantification of fluorescently labeled PAC-1 and fibrinogen binding to MVs. Confocal microscopy was used for evaluation of MVs adhesion to fibrinogen and for estimation of their involvement in whole blood thrombus formation in a parallel-plate flow chambers under arterial shear conditions.

Results And Conclusions: Neither circulating plasma MVs, nor platelet-activation-produced MVs bound PAC-1. However, both types of MVs specifically and weakly bound fibrinogen (about 400 molecules of bound fibrinogen per MV versus >100,000 per non-procoagulant activated platelet). Still, the MVs did not adhere stably to the immobilized fibrinogen. Both types of MVs were weakly incorporated into a thrombus and did not affect thrombus formation: average thrombus height in the recalcified whole blood in the presence of platelet-activation-produced MVs was 4.19 ± 1.38 μm versus 4.87 ± 1.72 μm (n = 6, p > 0.05) in the control experiments. This suggests that MVs present in plasma of healthy individuals are not likely to be directly involved in thrombus formation under arterial flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2023.11.018DOI Listing

Publication Analysis

Top Keywords

mvs
13
adhesive properties
12
thrombus formation
12
properties plasma-circulating
8
plasma-circulating platelet-derived
8
healthy individuals
8
platelet-activation-produced mvs
8
types mvs
8
mvs weakly
8
bound fibrinogen
8

Similar Publications

Quorum Sensing Mediates Interaction with In Vitro.

Microorganisms

January 2025

Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.

and are opportunistic pathogens that cause severe infections in hospitals, and their co-infections are increasingly reported. The interspecies interactions between these two bacterial species and their potential impacts on infections are largely unexplored. In this study, we first demonstrated that inhibits the growth of by iron chelating via quorum sensing.

View Article and Find Full Text PDF

Microvessel co-transplantation improves poor remuscularization by hiPSC-cardiomyocytes in a complex disease model of myocardial infarction and type 2 diabetes.

Stem Cell Reports

January 2025

Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada; Ajmera Transplant Center, University Health Network, Toronto, ON, Canada. Electronic address:

People with type 2 diabetes (T2D) are at a higher risk for myocardial infarction (MI) than age-matched healthy individuals. Here, we studied cell-based cardiac regeneration post MI in T2D rats modeling the co-morbid conditions in patients with MI. We recapitulated the T2D hallmarks and clinical aspects of diabetic cardiomyopathy using high-fat diet and streptozotocin in athymic rats, which were then subjected to MI and intramyocardial implantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with or without rat adipose-derived microvessels (MVs).

View Article and Find Full Text PDF

Antigen 43 associated with membrane vesicles contributes to bacterial cell association and biofilm formation.

Microbiol Spectr

January 2025

Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia.

Bacterial membrane vesicles (MVs) are produced by all bacteria and contribute to numerous bacterial functions due to their ability to package and transfer bacterial cargo. In doing so, MVs have been shown to facilitate horizontal gene transfer, mediate antimicrobial activity, and promote biofilm formation. Uropathogenic is a pathogenic Gram-negative organism that persists in the urinary tract of its host due to its ability to form persistent, antibiotic-resistant biofilms.

View Article and Find Full Text PDF

Study on the effects of Mogroside V in inhibiting NLRP3-mediated granulosa cell pyroptosis and insulin resistance to improve PCOS.

J Ovarian Res

January 2025

The First Affiliated Hospital, Gynecology&Obstetrics and Reproductive Medical Center, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.

View Article and Find Full Text PDF

Background: Right ventricular (RV) function has a well-established prognostic role in patients with severe mitral regurgitation (MR) undergoing transcatheter edge-to-edge repair (TEER) and is typically assessed using echocardiography-measured tricuspid annular plane systolic excursion. Recently, a deep learning model has been proposed that accurately predicts RV ejection fraction (RVEF) from 2-dimensional echocardiographic videos, with similar diagnostic accuracy as 3-dimensional imaging. This study aimed to evaluate the prognostic value of the deep learning-predicted RVEF values in patients with severe MR undergoing TEER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!