A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations.

Neural Netw

Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan 410081, China. Electronic address:

Published: February 2024

This paper addresses the dynamic quaternion-valued Sylvester equation (DQSE) using the quaternion real representation and the neural network method. To transform the Sylvester equation in the quaternion field into an equivalent equation in the real field, three different real representation modes for the quaternion are adopted by considering the non-commutativity of quaternion multiplication. Based on the equivalent Sylvester equation in the real field, a novel recurrent neural network model with an integral design formula is proposed to solve the DQSE. The proposed model, referred to as the fixed-time error-monitoring neural network (FTEMNN), achieves fixed-time convergence through the action of a state-of-the-art nonlinear activation function. The fixed-time convergence of the FTEMNN model is theoretically analyzed. Two examples are presented to verify the performance of the FTEMNN model with a specific focus on fixed-time convergence. Furthermore, the chattering phenomenon of the FTEMNN model is discussed, and a saturation function scheme is designed. Finally, the practical value of the FTEMNN model is demonstrated through its application to image fusion denoising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.11.058DOI Listing

Publication Analysis

Top Keywords

neural network
16
ftemnn model
16
sylvester equation
12
fixed-time convergence
12
fixed-time error-monitoring
8
error-monitoring neural
8
dynamic quaternion-valued
8
quaternion-valued sylvester
8
real representation
8
equation real
8

Similar Publications

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.

View Article and Find Full Text PDF

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.

View Article and Find Full Text PDF

Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer.

J Proteome Res

January 2025

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.

The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.

View Article and Find Full Text PDF

Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and therapy. Currently, these duties are extensively carried out by manual examination utilizing the human visual system.

View Article and Find Full Text PDF

Sharing cooking recipes is a great way to exchange culinary ideas and provide instructions for food preparation. However, categorizing raw recipes found online into appropriate food genres can be challenging due to a lack of adequate labeled data. In this study, we present a dataset named the "Assorted, Archetypal, and Annotated Two Million Extended (3A2M+) Cooking Recipe Dataset" that contains two million culinary recipes labeled in respective categories with extended named entities extracted from recipe descriptions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!