Numerical simulations of collapsing air bubbles considering complex and more accurate equations of state (EoS) for estimating the properties of both the liquid and gas are presented. The necessity for utilising such EoSs in bubble collapse simulations is illustrated by the unphysical (spurious) liquid temperature jump formed in the vicinity of the bubble-air interface when simplified EoSs are used. The solved fluid flow equations follow the mechanical equilibrium multiphase method of Kapila. The solver is coded in the AMReX platform, enabling high-performance computation with parallel processing and Adaptive Mesh Refinement for speeding up simulations. It is initially demonstrated that the frequently used Stiffened Gas (SG) EoS overpredicts the liquid temperature at high compression. More sophisticated EoS models, such as the International Association for the Properties of Water and Steam (IAPWS), the Modified Noble Abel Stiffened Gas (MNASG) and a modified Tait EoS introduced here, are also implemented into the flow solver and their differences are highlighted for bubble collapse cases for the first time. Subsequently, application of the developed model to cases of practical interest is showcased. More specifically, simulations of bubble collapse near a solid wall are presented for conditions simulating shock wave lithotripsy (SWL). It is concluded that for such cases, a maximum increase of 25 K of the liquid temperature in contact along the solid wall is caused during the collapse of the air bubble due to shock wave focusing effects. It is also highlighted that the maximum liquid heating varies depending on the initial bubble-wall stand-off distance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711231PMC
http://dx.doi.org/10.1016/j.ultsonch.2023.106663DOI Listing

Publication Analysis

Top Keywords

bubble collapse
16
liquid temperature
12
equations state
8
stiffened gas
8
solid wall
8
shock wave
8
bubble
5
collapse
5
liquid
5
prediction shock
4

Similar Publications

Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube.

Ultrason Sonochem

December 2024

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT).

View Article and Find Full Text PDF

Insights into cavitation enhancement: Numerical simulation and spectrum analysis of a novel dual-frequency octagonal ultrasonic reactor.

Ultrason Sonochem

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Chemical process safety and equipment technology, Tianjin 300350, China. Electronic address:

Ultrasonic reactors, widely applied in process intensification, face limitations in their industrial application due to a lack of theoretical support for their structural design and optimization, particularly concerning the uniformity of the cavitation zone. Addressing this gap, our study introduces a novel approach to design a multi-frequency octagonal ultrasonic reactor of capacity 9.5 L through numerical simulation and spectrum analysis.

View Article and Find Full Text PDF

Micro-jet formation induced by the interaction of a spherical and toroidal cavitation bubble.

Ultrason Sonochem

December 2024

Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany; Research Campus STIMULATE, University of Magdeburg, Otto-Hahn-Straße 2, Magdeburg, 39106, Germany. Electronic address:

We investigate experimentally and numerically the interaction between a spherical cavitation bubble and a wall-bounded toroidal cavitation bubble. We demonstrate that shock wave focusing following toroidal bubble initiation induces the formation of micro-jets that pierce the spherical bubble in the torus-axis direction away from the surface, strongest in the anti-phase scenario. The velocity of micro-jets is determined by the initial standoff distance of the spherical bubble from the wall and thus from the toroidal bubble, with peak jet velocities approaching 1000m/s.

View Article and Find Full Text PDF

Real-time thermal imaging of expansion dynamics during extrusion of protein-fortified snacks: Effects of nitrogen gas and protein concentration.

Food Res Int

January 2025

Department of Food and Human Nutritional Sciences, University of Manitoba, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada. Electronic address:

The physical quality challenges associated with incorporating proteins into puffed snacks can be mitigated using blowing agents. This study examined the effect of nitrogen gas as a physical blowing agent, on the expansion dynamics (e.g.

View Article and Find Full Text PDF

Market bubbles emerge when asset prices are driven unsustainably higher than asset values, and shifts in belief burst them. We demonstrate an analogous phenomenon in the case of biomedical knowledge, when promising research receives inflated attention. We introduce a diffusion index that quantifies whether research areas have been amplified within social and scientific bubbles, or have diffused and become evaluated more broadly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!