A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats. | LitMetric

Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats.

Mar Pollut Bull

Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea; Department of Ocean Environmental System Science, University of Science and Technology, Daejeon, Republic of Korea. Electronic address:

Published: January 2024

This study proposes a deep learning model, U-Net, to improve surface sediment classification using high-resolution unmanned aerial vehicle (UAV) images. We constructed training datasets with UAV images and corresponding labeling data acquired from three field surveys on the Hwangdo tidal flat. The labeling data indicated the distribution of surface sediment types. We compared the performance of the U-Net model trained in various implementation environments, such as surface sediment criteria, input datasets, and classification models. The U-Net trained with five class criteria-derived from previous classification criteria-yielded valid results (overall accuracy:65.6 %). The most accurate results were acquired from trained U-Net with all input datasets; in particular, the tidal channel density caused a significant increase in accuracy. The accuracy of the U-Net was approximately 20 % higher than that of other classification models. These results demonstrate that surface sediment classification using UAV images and the U-Net model is effective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115823DOI Listing

Publication Analysis

Top Keywords

surface sediment
20
sediment classification
12
uav images
12
deep learning
8
learning model
8
unmanned aerial
8
aerial vehicle
8
labeling data
8
u-net model
8
input datasets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!