Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction of intense laser pulses with plasma mirrors has demonstrated the ability to generate high-order harmonics, producing a bright source of extreme ultraviolet (XUV) radiation and attosecond pulses. Here, we report an unexpected transition in this process. We show that the loss of spatiotemporal coherence in the reflected high harmonics can lead to a new regime of highly efficient coherent XUV generation, with an extraordinary property where the radiation is directionally anomalous, propagating parallel to the mirror surface. With analytical calculations and numerical particle-in-cell simulations, we discover that the radiation emission is due to laser-driven oscillations of relativistic electron nanobunches that originate from a plasma surface instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.205001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!