The polarization of Λ and Λ[over ¯] hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sqrt[s_{NN}]=200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild p_{T} dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and p_{T} dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.202301 | DOI Listing |
Nat Commun
October 2024
One of the fundamental goals of particle physics is to gain a microscopic understanding of the strong interaction. Electromagnetic form factors quantify the structure of hadrons in terms of charge and magnetization distributions. While the nucleon structure has been investigated extensively, data on hyperons are still scarce.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.
Rep Prog Phys
September 2024
Department of Physics, University of Florida, Gainesville, FL 32611, United States of America.
The first hyperon was discovered about 70 years ago, but the nature of these particles, particularly with regard to multistrange hyperons, and many of their properties can still be considered to be literally strange. A dedicated and successful global spectroscopy program in the 1960s and 1970s usingK-beams revealed many multistrange candidates, but the available evidence of their existence is statistically limited. For this reason, there is still much to learn about the systematics of the spectrum of excited hyperon states and what they have in common with their non-strange companions, or how they differ from the nucleon and Δ resonances.
View Article and Find Full Text PDFPhys Rev Lett
November 2023
Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany.
The polarization of Λ and Λ[over ¯] hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sqrt[s_{NN}]=200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild p_{T} dependence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!