We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability. A proof-of-concept experiment is performed on a standard diffraction grating, and various effective parameters on the imaging performance are investigated. The results are validated by atomic force microscopy and Mirau-DHM, and 3D morphometric information of the sample under inspection is obtained. The technique is then applied for 3D quantitative measurement and visualization of a human red blood cell, proving the principle of our easy-to-implement and vibration-immune arrangement for high-contrast label-free QPI of biological samples, and its utility in cell morphology, identification, and classification.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.502599DOI Listing

Publication Analysis

Top Keywords

simple high-resolution
8
microscopy
4
high-resolution microscopy
4
microscopy dielectric
4
dielectric microsphere
4
microsphere proof
4
proof concept
4
concept simple
4
high-resolution approach
4
approach quantitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!