Collecting higher-quality three-dimensional points-cloud data in various scenarios practically and robustly has led to a strong demand for such dToF-based LiDAR systems with higher ambient noise rejection ability and limited optical power consumption, which is a sharp conflict. To alleviate such a clash, an idea of utilizing a strong ambient noise rejection ability of intensity and RGB images is proposed, based on which a lightweight CNN is newly, to the best of our knowledge, designed, achieving a state-of-the-art performance even with 90 × less inference time and 480 × fewer FLOPs. With such net deployed on edge devices, a complete AI-LiDAR system is presented, showing a 100 × fewer signal photon demand in simulation experiments when creating depth images of the same quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.504351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!