Aiming at applications like expanding usable wave band of optical telecommunication and preparing Sr optical lattice clocks, a 1627 nm single-frequency fiber laser (SFFL) is demonstrated based on a 7-m-long self-designed Er-doped hybridized glass fiber (EDHF) and a linear cavity configuration with a loop mirror filter (LMF). By inserting a 10-m-long unpumped commercial Er-doped fiber as a dynamic Bragg grating into the LMF, a stable single-longitudinal-mode (SLM) laser with an output power of about 10 mW is obtained. The optical signal-to-noise ratio (OSNR) of SFFL is over 50 dB, and the linewidth is about 3.7 kHz. The measured relative intensity noise (RIN) is less than -140 dB/Hz at frequencies of over 0.5 MHz, and a power variation in 1 h is less than ±0.26%. To our best knowledge, it is the first demonstration of a SFFL operating at the U-band. This 1627 nm SFFL can provide advanced light source technology support for many cutting-edge applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.506049DOI Listing

Publication Analysis

Top Keywords

single-frequency fiber
8
fiber laser
8
self-designed er-doped
8
er-doped hybridized
8
hybridized glass
8
glass fiber
8
laser 1627 nm
4
1627 nm based
4
based self-designed
4
fiber
4

Similar Publications

High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing.

View Article and Find Full Text PDF

Difference frequency generation (DFG) based tunable single-frequency mid-infrared (MIR) light sources are desirable for high-resolution spectroscopy, sensing, and imaging. In this work, we demonstrate a continuous-wave (CW) single-frequency DFG in a ZnGeP (ZGP) crystal driven by all-fiber near-infrared (NIR) fiber lasers, for the first time to our knowledge. The all-fiber NIR laser sources consist of a 1.

View Article and Find Full Text PDF

We present a tunable and switchable single-frequency (SF) erbium-doped fiber laser (EDFL) operating at 1.6 µm. For the first time, a multichannel Sagnac filter, a "θ" sub cavity, and a saturable absorber (SA) have been combined to achieve SF operation of single- and dual-wavelength tunability as well as single-dual-triple-wavelength switching.

View Article and Find Full Text PDF

In this paper, high Er concentration erbium doped fiber (EDF) and erbium-ytterbium co-doped fiber (EYDF) were fabricated for the seed and master oscillator power amplifier (MOPA) system of the single-frequency fiber laser. An in-band pumping source with the wavelength of 1535 nm was proposed to improve the efficiency in the ring-cavity. A slope efficiency of 23.

View Article and Find Full Text PDF

We propose and demonstrate the inscription of ultra-short distributed Bragg reflector fiber lasers (DBR-FLs) in Er/Yb co-doped fiber (EYDF) using a femtosecond laser plane-by-plane (Pl-b-Pl) method. By integrating the spherical aberration (SA) with a laser 2D scanning process, a planar refractive index modification (RIM) region can be induced in the fiber core. Thanks to the Pl-b-Pl inscription, a high-quality fiber Bragg grating (FBG) in an EYDF is produced, exhibiting a grating strength exceeding 40 dB and an insertion loss of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!